Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: A multicenter study

被引:51
作者
Gu, Jionghui [1 ,2 ]
Tong, Tong [2 ,3 ]
Xu, Dong [4 ]
Cheng, Fang [4 ]
Fang, Chengyu [1 ]
He, Chang [1 ]
Wang, Jing [1 ]
Wang, Baohua [1 ]
Yang, Xin [2 ,3 ]
Wang, Kun [2 ,3 ,8 ]
Tian, Jie [2 ,3 ,5 ,8 ]
Jiang, Tian'an [1 ,6 ,7 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 1, Coll Med, Dept Ultrasound, Hangzhou, Peoples R China
[2] Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Zhejiang Canc Hosp, Dept Ultrasound, Canc Hosp, Hangzhou, Peoples R China
[5] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med & Engn, Beijing, Peoples R China
[6] Zhejiang Prov Key Lab Pulsed Elect Field Technol M, Hangzhou, Peoples R China
[7] Zhejiang Univ, Affiliated Hosp 1, Coll Med, Dept Ultrasound, Hangzhou 310003, Peoples R China
[8] Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
关键词
breast cancer; deep learning; lymph node metastasis; neoadjuvant chemotherapy; pathologic complete response; treatment decision; ultrasonography; PATHOLOGICAL COMPLETE RESPONSE; ULTRASOUND; MRI;
D O I
10.1002/cncr.34540
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Neoadjuvant chemotherapy (NAC) can downstage tumors and axillary lymph nodes in breast cancer (BC) patients. However, tumors and axillary response to NAC are not parallel and vary among patients. This study aims to explore the feasibility of deep learning radiomics nomogram (DLRN) for independently predicting the status of tumors and lymph node metastasis (LNM) after NAC. Methods: In total, 484 BC patients who completed NAC from two hospitals (H1: 297 patients in the training cohort and 99 patients in the validation cohort; H2: 88 patients in the test cohort) were retrospectively enrolled. The authors developed two deep learning radiomics (DLR) models for personalized prediction of the tumor pathologic complete response (PCR) to NAC (DLR-PCR) and the LNM status (DLR-LNM) after NAC based on pre-NAC and after-NAC ultrasonography images. Furthermore, they proposed two DLRNs (DLRN-PCR and DLRN-LNM) for two different tasks based on the clinical characteristics and DLR scores, which were generated from both DLR-PCR and DLR-LNM. Results: In the validation and test cohorts, DLRN-PCR exhibited areas under the receiver operating characteristic curves (AUCs) of 0.903 and 0.896 with sensitivities of 91.2% and 75.0%, respectively. DLRN-LNM achieved AUCs of 0.853 and 0.863, specificities of 82.0% and 81.8%, and negative predictive values of 81.3% and 87.2% in the validation and test cohorts, respectively. The two DLRN models achieved satisfactory predictive performance based on different BC subtypes. Conclusions: The proposed DLRN models have the potential to accurately predict the tumor PCR and LNM status after NAC. In this study, we proposed two deep learning radiomics nomogram models based on pre-neoadjuvant chemotherapy (NAC) and preoperative ultrasonography images for independently predicting the status of tumor and axillary lymph node (ALN) after NAC. A more comprehensive assessment of the patient's condition after NAC can be achieved by predicting the status of the tumor and ALN separately. Our model can potentially provide a noninvasive and personalized method to offer decision support for organ preservation and avoidance of excessive surgery.
引用
收藏
页码:356 / 366
页数:11
相关论文
共 27 条
[1]   Accuracy of breast MRI in evaluating nodal status after neoadjuvant therapy in invasive lobular carcinoma [J].
Abel, Mary Kathryn ;
Greenwood, Heather ;
Kelil, Tatiana ;
Guo, Ruby ;
Brabham, Case ;
Hylton, Nola ;
Wong, Jasmine ;
Alvarado, Michael ;
Ewing, Cheryl ;
Esserman, Laura J. ;
Boughey, Judy C. ;
Mukhtar, Rita A. .
NPJ BREAST CANCER, 2021, 7 (01)
[2]  
Abnar S, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P4190
[3]   Breast MRI and tumour biology predict axillary lymph node response to neoadjuvant chemotherapy for breast cancer [J].
Al-Hattali, Samia ;
Vinnicombe, Sarah J. ;
Gowdh, Nazleen Muhammad ;
Evans, Andrew ;
Armstrong, Sharon ;
Adamson, Douglas ;
Purdie, Colin A. ;
Macaskill, E. Jane .
CANCER IMAGING, 2019, 19 (01)
[4]   Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: Results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer [J].
Buzdar, AU ;
Ibrahim, NK ;
Francis, D ;
Booser, DJ ;
Thomas, ES ;
Theriault, RL ;
Pusztai, L ;
Green, MC ;
Arun, BK ;
Giordano, SH ;
Cristofanilli, M ;
Frye, DK ;
Smith, TL ;
Hunt, KK ;
Singletary, SE ;
Sahin, AA ;
Ewer, MS ;
Buchholz, TA ;
Berry, D ;
Hortobagyi, GN .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (16) :3676-3685
[5]   Early Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer Sonography Using Siamese Convolutional Neural Networks [J].
Byra, Michal ;
Dobruch-Sobczak, Katarzyna ;
Klimonda, Ziemowit ;
Piotrzkowska-Wroblewska, Hanna ;
Litniewski, Jerzy .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (03) :797-805
[6]   Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis [J].
Cortazar, Patricia ;
Zhang, Lijun ;
Untch, Michael ;
Mehta, Keyur ;
Costantino, Joseph P. ;
Wolmark, Norman ;
Bonnefoi, Herve ;
Cameron, David ;
Gianni, Luca ;
Valagussa, Pinuccia ;
Swain, Sandra M. ;
Prowell, Tatiana ;
Loibl, Sibylle ;
Wickerham, D. Lawrence ;
Bogaerts, Jan ;
Baselga, Jose ;
Perou, Charles ;
Blumenthal, Gideon ;
Blohmer, Jens ;
Mamounas, Eleftherios P. ;
Bergh, Jonas ;
Semiglazov, Vladimir ;
Justice, Robert ;
Eidtmann, Holger ;
Paik, Soonmyung ;
Piccart, Martine ;
Sridhara, Rajeshwari ;
Fasching, Peter A. ;
Slaets, Leen ;
Tang, Shenghui ;
Gerber, Bernd ;
Geyer, Charles E., Jr. ;
Pazdur, Richard ;
Ditsch, Nina ;
Rastogi, Priya ;
Eiermann, Wolfgang ;
von Minckwitz, Gunter .
LANCET, 2014, 384 (9938) :164-172
[7]   Accuracy of Clinical Examination, Digital Mammogram, Ultrasound, and MRI in Determining Postneoadjuvant Pathologic Tumor Response in Operable Breast Cancer Patients [J].
Croshaw, Randal ;
Shapiro-Wright, Hilary ;
Svensson, Erik ;
Erb, Kathleen ;
Julian, Thomas .
ANNALS OF SURGICAL ONCOLOGY, 2011, 18 (11) :3160-3163
[8]   Neoadjuvant chemotherapy in breast cancer: more than just downsizing [J].
Derks, Marloes G. M. ;
van de Velde, Cornelis J. H. .
LANCET ONCOLOGY, 2018, 19 (01) :2-3
[9]  
Dosovitskiy A., 2021, P INT C LEARN REPR, DOI DOI 10.48550/ARXIV.2010.11929
[10]   Breast Cancer, Version 3.2018 Featured Updates to the NCCN Guidelines [J].
Goetz, Matthew P. ;
Gradishar, William J. ;
Anderson, Benjamin O. ;
Abraham, Jame ;
Aft, Rebecca ;
Allison, Kimberly H. ;
Blair, Sarah L. ;
Burstein, Harold J. ;
Dang, Chau ;
Elias, Anthony D. ;
Farrar, William B. ;
Giordano, Sharon H. ;
Goldstein, Lori J. ;
Isakoff, Steven J. ;
Lyons, Janice ;
Marcom, P. Kelly ;
Mayer, Ingrid A. ;
Moran, Meena S. ;
Mortimer, Joanne ;
O'Regan, Ruth M. ;
Patel, Sameer A. ;
Pierce, Lori J. ;
Reed, Elizabeth C. ;
Rugo, Hope S. ;
Sitapati, Amy ;
Smith, Karen Lisa ;
Smith, Mary Lou ;
Soliman, Hatem ;
Telli, Melinda L. ;
Ward, John H. ;
Young, Jessica S. ;
Shead, Dorothy A. ;
Kumar, Rashmi .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2019, 17 (02) :119-126