Optimal control of a reaction-diffusion model related to the spread of COVID-19

被引:6
作者
Colli, Pierluigi [1 ]
Gilardi, Gianni [1 ]
Marinoschi, Gabriela [2 ]
Rocca, Elisabetta [1 ]
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, IMATI CNR Pavia, Via Ferrata 5, I-27100 Pavia, Italy
[2] Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl M, Calea 13 Septembrie 13, Bucharest 050711, Romania
关键词
COVID-19; partial differential equations; reaction-diffusion system; epidemic models; existence of solutions; uniqueness; optimal control; EPIDEMIC;
D O I
10.1142/S0219530523500197
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the well-posedness and optimal control problem of a reaction-diffusion system for an epidemic susceptible-exposed-infected-recovered-susceptible mathematical model in which the dynamics develops in a spatially heterogeneous environment. Using as control variables the transmission rates u(e) and u(i )of contagion resulting from the contact with both asymptomatic and symptomatic persons, respectively, we optimize the number of exposed and infected individuals at a final time T of the controlled evolution of the system. More precisely, we search for the optimal u(i) and u(e) such that the number of infected plus exposed does not exceed at the final time a threshold value Lambda, fixed a priori. We prove here the existence of optimal controls in a proper functional framework and we derive the first-order necessary optimality conditions in terms of the adjoint variables.
引用
收藏
页码:111 / 136
页数:26
相关论文
共 26 条
[1]   Well-posedness for a diffusion-reaction compartmental model simulating the spread of COVID-19 [J].
Auricchio, Ferdinando ;
Colli, Pierluigi ;
Gilardi, Gianni ;
Reali, Alessandro ;
Rocca, Elisabetta .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (12) :12529-12548
[2]   Optimal control for a SIR epidemic model with limited quarantine [J].
Balderrama, Rocio ;
Peressutti, Javier ;
Pablo Pinasco, Juan ;
Vazquez, Federico ;
Sanchez de la Vega, Constanza .
SCIENTIFIC REPORTS, 2022, 12 (01)
[3]   Modeling virus pandemics in a globally connected world a challenge towards a mathematics for living systems [J].
Bellomo, N. ;
Brezzi, F. ;
Chaplain, M. A. J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (12) :2391-2397
[4]   Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth [J].
Colli, Pierluigi ;
Gomez, Hector ;
Lorenzo, Guillermo ;
Marinoschi, Gabriela ;
Reali, Alessandro ;
Rocca, Elisabetta .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (07) :1419-1468
[5]  
De Mottoni P., 1979, Nonlinear Analysis Theory, Methods & Applications, V3, P663, DOI 10.1016/0362-546X(79)90095-6
[6]   A vector-host epidemic model with spatial structure and age of infection [J].
Fitzgibbon, W. E. ;
Morgan, J. J. ;
Webb, Glenn F. ;
Wu, Yixiang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 41 :692-705
[7]   DIFFUSION EPIDEMIC MODELS WITH INCUBATION AND CRISSCROSS DYNAMICS [J].
FITZGIBBON, WE ;
PARROTT, ME ;
WEBB, GF .
MATHEMATICAL BIOSCIENCES, 1995, 128 (1-2) :131-155
[8]   Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures [J].
Gatto, Marino ;
Bertuzzo, Enrico ;
Mari, Lorenzo ;
Miccoli, Stefano ;
Carraro, Luca ;
Casagrandi, Renato ;
Rinaldo, Andrea .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (19) :10484-10491
[9]   Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy [J].
Giordano, Giulia ;
Blanchini, Franco ;
Bruno, Raffaele ;
Colaneri, Patrizio ;
Di Filippo, Alessandro ;
Di Matteo, Angela ;
Colaneri, Marta .
NATURE MEDICINE, 2020, 26 (06) :855-+
[10]   Bayesian-based predictions of COVID-19 evolution in Texas using multispecies mixture-theoretic continuum models [J].
Jha, Prashant K. ;
Cao, Lianghao ;
Oden, J. Tinsley .
COMPUTATIONAL MECHANICS, 2020, 66 (05) :1055-1068