Pyrolysis behaviour of shellfish waste via TG-FTIR and Py-GC/MS

被引:3
|
作者
Yang, Yan [1 ,2 ]
Foong, Shin Ying [2 ]
Yek, Peter Nai Yuh [3 ]
Mohammed, Abdallah A. A. [4 ]
Verma, Meenaksi [5 ]
Ng, Hui Suan [6 ]
Jung, Sang-Chul [7 ]
He, Yifeng [1 ]
Peng, Wanxi [1 ]
Lam, Su Shiung [2 ,8 ,9 ]
机构
[1] Henan Agr Univ, Sch Forestry, Henan Prov Int Collaborat Lab Forest Resources Uti, Zhengzhou 450002, Peoples R China
[2] Univ Malaysia Terengganu, Higher Inst Ctr Excellence HICoE, Inst Trop Aquaculture & Fisheries AKUATROP, Kuala Nerus 21030, Terengganu, Malaysia
[3] Univ Technol Sarawak, Ctr Res Innovat & Sustainable Dev, 1 Jalan Univ, Sibu, Sarawak, Malaysia
[4] King Saud Univ, Coll Sci, Dept Chem, POB 2455, Riyadh 11451, Saudi Arabia
[5] Chandigarh Univ, Univ Ctr Res & Dev, Dept Chem, Mohali, Punjab, India
[6] Univ Cyberjaya, Ctr Res & Grad Studies, Cyberjaya 63000, Selangor, Malaysia
[7] Sunchon Natl Univ, Dept Environm Engn, 255 Jungang ro, Sunchon 57922, Jeonnam, North Korea
[8] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Taoyuan, Taiwan
[9] Saveetha Univ, Saveetha Inst Med & Tech Sci SIMATS, Ctr Global Hlth Res CGHR, Chennai, India
来源
关键词
Shellfish waste; Pyrolysis; Carboxyl; PY-GC/MS; TG-FTIR; CHITIN; STRENGTH; BIOMASS; NICKEL;
D O I
10.1016/j.scp.2023.101246
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Shellfish waste (SW), a by-product of seafood processing and consumption, poses ecological concerns from improper management, resulting adverse effects such as water pollution, habitat degradation, and destruction of local ecosystems. Furthermore, the inefficient disposal of SW goes against the principles of circular economy and resource utilization. Therefore, this study is conducted to convert and reuse SW and transform it into value-added products, thereby con-tributing to sustainable waste management practices. Shellfish waste was characterized for its elemental and proximate contents, followed by performing pyrolysis of SW to study the pyrolysis behaviors and chemical composition of pyrolytic products. Thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TG-FTIR) was employed to identify the optimal pyrolysis temperature range (660-780 degrees C). Additionally, pyrolysis combined with gas chromatography/mass spectrometry (Py-GC/MS) was utilized to analyze gaseous products generated from SW pyrolysis. The analysis revealed that SW possesses a low high calorific value (5.57-8.05 MJ/kg) and high H/C (0.3-1.3) and O/C (3.2-5.2) ratios, rendering it unsuitable for direct use as fuel. Optimal pyrolysis conditions were identified within the temperature range of 660-780 degrees C through TG-FTIR analysis. Py-GC/MS analysis at 700 degrees C and a heating rate of 30 degrees C/min indicated that carboxyl compounds (37.3-87.0%) constituted the dominant components of gaseous products generated during SW pyrolysis. In conclusion, the study underscores the promise of pyrolysis as a viable method for transforming SW into value-added chemicals. The findings of this study contribute to the advancement of sustainable waste management strategies and the utilization of waste materials for valuable purposes in various industries.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] RDF pyrolysis by TG-FTIR and Py-GC/MS and combustion in a double furnaces reactor
    Xiaolin Chen
    Junlin Xie
    Shuxia Mei
    Feng He
    Hu Yang
    Journal of Thermal Analysis and Calorimetry, 2019, 136 : 893 - 902
  • [12] Kinetics and behavior analysis of lobster shell pyrolysis by TG-FTIR and Py-GC/MS
    Ding, Yongyu
    Liu, Jiacheng
    Qiu, Wen
    Cheng, Qunpeng
    Fan, Guozhi
    Song, Guangsen
    Zhang, Shunxi
    Journal of Analytical and Applied Pyrolysis, 2022, 165
  • [13] Kinetic Analysis and Pyrolysis Behavior of Pine Needles by TG-FTIR and Py-GC/MS
    Xu, Langui
    Zhang, Yujian
    Wang, Ziyong
    Guo, Shurui
    Hao, Yongxing
    Gao, Yuguo
    Xin, Min
    Ran, Yi
    Li, Shuxun
    Ji, Rui
    Li, Hongmei
    Jiang, Huixia
    He, Qingyan
    Huang, Ruyi
    BIORESOURCES, 2023, 18 (03) : 6412 - 6429
  • [14] Pyrolytic kinetics, reaction mechanisms and products of waste tea via TG-FTIR and Py-GC/MS
    Cai, Haiming
    Liu, Jingyong
    Xie, Wuming
    Kuo, Jiahong
    Buyukada, Musa
    Evrendilek, Fatih
    ENERGY CONVERSION AND MANAGEMENT, 2019, 184 : 436 - 447
  • [15] Study on two-step pyrolysis of soybean stalk by TG-FTIR and Py-GC/MS
    Zhang, Liqiang
    Li, Kai
    Zhu, Xifeng
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2017, 127 : 91 - 98
  • [16] Effects of anaerobic digestion pretreatment on the pyrolysis of Sargassum: Investigation by TG-FTIR and Py-GC/MS
    Wang, Zhi
    Che, Yuechi
    Li, Jian
    Wu, Wenzhu
    Yan, Beibei
    Zhang, Yingxiu
    Wang, Xutong
    Yu, Fan
    Chen, Guanyi
    Zuo, Xiaoyu
    Li, Xiujin
    ENERGY CONVERSION AND MANAGEMENT, 2022, 267
  • [17] Pyrolysis of Spirulina platensis, Tetradesmus obliquus and Chlorella vulgaris by TG-FTIR and Py-GC/MS: Kinetic analysis and pyrolysis behaviour
    Kong, Wenwen
    Shen, Boxiong
    Ma, Jiao
    Kong, Jia
    Feng, Shuo
    Wang, Zhuozhi
    Xiong, Lifu
    ENERGY, 2022, 244
  • [18] Evaluation of the co-pyrolysis of lignin with plastic polymers by TG-FTIR and Py-GC/MS
    Jin, Wei
    Shen, Dekui
    Liu, Qian
    Xiao, Rui
    POLYMER DEGRADATION AND STABILITY, 2016, 133 : 65 - 74
  • [19] Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS
    Chen, Lei
    Wang, Xianhua
    Yang, Haiping
    Lu, Qiang
    Li, Di
    Yang, Qing
    Chen, Hanping
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2015, 113 : 499 - 507
  • [20] Study on two-step pyrolysis of soybean stalk by TG-FTIR and Py-GC/MS
    Li, Kai (likai11@ustc.edu.cn), 1600, Elsevier B.V., Netherlands (127):