From p-Wasserstein bounds to moderate deviations

被引:2
|
作者
Fang, Xiao [1 ]
Koike, Yuta [2 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Univ Tokyo, Tokyo, Japan
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2023年 / 28卷
关键词
central limit theorem; Cramer-type moderate deviations; multivariate normal ap; proximation; p -Wasserstein distance; Stein's method; MULTIVARIATE NORMAL APPROXIMATION; CENTRAL-LIMIT-THEOREM; STEINS METHOD; INEQUALITIES; CONVERGENCE; ENTROPY; SUMS;
D O I
10.1214/23-EJP976
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use a new method via p-Wasserstein bounds to prove Cramer-type moderate deviations in (multivariate) normal approximations. In the classical setting that W is a standardized sum of n independent and identically distributed (i.i.d.) random variables with sub-exponential tails, our method recovers the optimal range of 0 x = o(n1/6) and the near optimal error rate O(1)(1+x)(log n+x2)/A/n for P(W > x)/(1- & phi; (x)) & RARR; 1, where & phi; is the standard normal distribution function. Our method also works for dependent random variables (vectors) and we give applications to the combinatorial central limit theorem, Wiener chaos, homogeneous sums and local dependence. The key step of our method is to show that the p-Wasserstein distance between the distribution of the random variable (vector) of interest and a normal distribution grows like O(p & alpha;& UDelta;), 1 p p0, for some constants & alpha;, & UDelta; and p0. In the above i.i.d. setting, & alpha; = 1, & UDelta; = 1/A/n, p0 = n1/3. For this purpose, we obtain general p-Wasserstein bounds in (multivariate) normal approximations using Stein's method.
引用
收藏
页数:52
相关论文
共 50 条
  • [31] Moderate deviations and central limit theorem for positive diffusions
    Yumeng Li
    Shuguang Zhang
    Journal of Inequalities and Applications, 2016
  • [32] Moderate deviations for stochastic Kuramoto-Sivashinsky equation
    Rose, Gregory Amali Paul
    Suvinthra, Murugan
    Balachandran, Krishnan
    STOCHASTICS AND DYNAMICS, 2022, 22 (06)
  • [33] Moderate deviations for stationary sequences of bounded random variables
    Dedecker, Jerome
    Merlevede, Florence
    Peligrad, Magda
    Utev, Sergey
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (02): : 453 - 476
  • [34] Moderate deviations principle for products of sums of random variables
    Miao Yu
    Mu JianYong
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (04) : 769 - 784
  • [35] Moderate deviations and central limit theorem for positive diffusions
    Li, Yumeng
    Zhang, Shuguang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [36] Moderate Deviations for a Stochastic Wave Equation in Dimension Three
    Lingyan Cheng
    Ruinan Li
    Ran Wang
    Nian Yao
    Acta Applicandae Mathematicae, 2018, 158 : 67 - 85
  • [37] Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables
    Anastasiou, Andreas
    STATISTICS & PROBABILITY LETTERS, 2017, 129 : 171 - 181
  • [38] Order p Quantum Wasserstein Distances from Couplings
    Beatty, Emily
    Franca, Daniel Stilck
    ANNALES HENRI POINCARE, 2025,
  • [39] WASSERSTEIN GEOMETRY AND RICCI CURVATURE BOUNDS FOR POISSON SPACES
    DELLO Schiavo, Lorenzo
    Herry, Ronan
    Suzuki, Kohei
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2024, 11
  • [40] Wasserstein Continuity of Entropy and Outer Bounds for Interference Channels
    Polyanskiy, Yury
    Wu, Yihong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (07) : 3992 - 4002