From p-Wasserstein bounds to moderate deviations

被引:2
|
作者
Fang, Xiao [1 ]
Koike, Yuta [2 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Univ Tokyo, Tokyo, Japan
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2023年 / 28卷
关键词
central limit theorem; Cramer-type moderate deviations; multivariate normal ap; proximation; p -Wasserstein distance; Stein's method; MULTIVARIATE NORMAL APPROXIMATION; CENTRAL-LIMIT-THEOREM; STEINS METHOD; INEQUALITIES; CONVERGENCE; ENTROPY; SUMS;
D O I
10.1214/23-EJP976
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use a new method via p-Wasserstein bounds to prove Cramer-type moderate deviations in (multivariate) normal approximations. In the classical setting that W is a standardized sum of n independent and identically distributed (i.i.d.) random variables with sub-exponential tails, our method recovers the optimal range of 0 x = o(n1/6) and the near optimal error rate O(1)(1+x)(log n+x2)/A/n for P(W > x)/(1- & phi; (x)) & RARR; 1, where & phi; is the standard normal distribution function. Our method also works for dependent random variables (vectors) and we give applications to the combinatorial central limit theorem, Wiener chaos, homogeneous sums and local dependence. The key step of our method is to show that the p-Wasserstein distance between the distribution of the random variable (vector) of interest and a normal distribution grows like O(p & alpha;& UDelta;), 1 p p0, for some constants & alpha;, & UDelta; and p0. In the above i.i.d. setting, & alpha; = 1, & UDelta; = 1/A/n, p0 = n1/3. For this purpose, we obtain general p-Wasserstein bounds in (multivariate) normal approximations using Stein's method.
引用
收藏
页数:52
相关论文
共 50 条
  • [21] ON MODERATE DEVIATIONS FOR COUNT DATA AND GAMMA APPROXIMATION
    Liu, Qingwei
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 105 (02) : 347 - 348
  • [22] MODERATE DEVIATIONS IN POISSON APPROXIMATION: A FIRST ATTEMPT
    Chen, Louis H. Y.
    Fang, Xiao
    Shao, Qi-Man
    STATISTICA SINICA, 2013, 23 (04) : 1523 - 1540
  • [23] Moderate deviations for linear eigenvalue statistics of β-ensembles
    Gao, Fuqing
    Mu, Jianyong
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2022, 11 (02)
  • [24] EXACT MODERATE AND LARGE DEVIATIONS FOR LINEAR PROCESSES
    Peligrad, Magda
    Sang, Hailin
    Zhong, Yunda
    Wu, Wei Biao
    STATISTICA SINICA, 2014, 24 (02) : 957 - 969
  • [25] Moderate Deviations Analysis of Binary Hypothesis Testing
    Sason, Igal
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012, : 821 - 825
  • [26] Wasserstein and Kolmogorov Error Bounds for Variance-Gamma Approximation via Stein's Method I
    Gaunt, Robert E.
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (01) : 465 - 505
  • [27] Moderate deviations for stochastic models of two-dimensional second grade fluids
    Zhai, Jianliang
    Zhang, Tusheng
    Zheng, Wuting
    STOCHASTICS AND DYNAMICS, 2018, 18 (03)
  • [28] Moderate deviations for stationary sequences of Hilbert-valued bounded random variables
    Dede, Sophie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 349 (02) : 374 - 394
  • [29] Berry-Esseen bound and precise moderate deviations for products of random matrices
    Xiao, Hui
    Grama, Ion
    Liu, Quansheng
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (08) : 2691 - 2750
  • [30] Moderate deviations for a class of semilinear SPDE with fractional noises
    Liu, Junfeng
    Cang, Yuquan
    Fang, Xinian
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (05) : 811 - 835