From p-Wasserstein bounds to moderate deviations

被引:2
|
作者
Fang, Xiao [1 ]
Koike, Yuta [2 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Univ Tokyo, Tokyo, Japan
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2023年 / 28卷
关键词
central limit theorem; Cramer-type moderate deviations; multivariate normal ap; proximation; p -Wasserstein distance; Stein's method; MULTIVARIATE NORMAL APPROXIMATION; CENTRAL-LIMIT-THEOREM; STEINS METHOD; INEQUALITIES; CONVERGENCE; ENTROPY; SUMS;
D O I
10.1214/23-EJP976
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use a new method via p-Wasserstein bounds to prove Cramer-type moderate deviations in (multivariate) normal approximations. In the classical setting that W is a standardized sum of n independent and identically distributed (i.i.d.) random variables with sub-exponential tails, our method recovers the optimal range of 0 x = o(n1/6) and the near optimal error rate O(1)(1+x)(log n+x2)/A/n for P(W > x)/(1- & phi; (x)) & RARR; 1, where & phi; is the standard normal distribution function. Our method also works for dependent random variables (vectors) and we give applications to the combinatorial central limit theorem, Wiener chaos, homogeneous sums and local dependence. The key step of our method is to show that the p-Wasserstein distance between the distribution of the random variable (vector) of interest and a normal distribution grows like O(p & alpha;& UDelta;), 1 p p0, for some constants & alpha;, & UDelta; and p0. In the above i.i.d. setting, & alpha; = 1, & UDelta; = 1/A/n, p0 = n1/3. For this purpose, we obtain general p-Wasserstein bounds in (multivariate) normal approximations using Stein's method.
引用
收藏
页数:52
相关论文
共 50 条
  • [1] LIMIT DISTRIBUTION THEORY FOR SMOOTH p-WASSERSTEIN DISTANCES
    Goldfeld, Ziv
    Kato, Kengo
    Nietert, Sloan
    Rioux, Gabriel
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (02) : 2447 - 2487
  • [2] Smooth p-Wasserstein Distance: Structure, Empirical Approximation, and Statistical Applications
    Nietert, Sloan
    Goldfeld, Ziv
    Kato, Kengo
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [3] Wasserstein distance error bounds for the multivariate normal approximation of the maximum likelihood estimator
    Anastasiou, Andreas
    Gaunt, Robert E.
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 5758 - 5810
  • [4] Wasserstein-p bounds in the central limit theorem under local dependence
    Liu, Tianle
    Austern, Morgane
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [5] q-Heat flow and the gradient flow of the Renyi entropy in the p-Wasserstein space
    Kell, Martin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (08) : 2045 - 2089
  • [6] Wasserstein-2 bounds in normal approximation under local dependence
    Fang, Xiao
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [7] FROM STEIN IDENTITIES TO MODERATE DEVIATIONS
    Chen, Louis H. Y.
    Fang, Xiao
    Shao, Qi-Man
    ANNALS OF PROBABILITY, 2013, 41 (01) : 262 - 293
  • [8] Cramér's moderate deviations for martingales with applications
    Fan, Xiequan
    Shao, Qi-Man
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 2046 - 2074
  • [9] Bounds in L1 Wasserstein distance on the normal approximation of general M-estimators
    Bachoc, Francois
    Fathi, Max
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (01): : 1457 - 1491
  • [10] On moderate deviations for martingales
    Grama, IG
    ANNALS OF PROBABILITY, 1997, 25 (01) : 152 - 183