Bearing Fault Diagnosis With Envelope Analysis and Machine Learning Approaches Using CWRU Dataset

被引:29
|
作者
Alonso-Gonzalez, Miguel [1 ]
Diaz, Vicente Garcia [1 ]
Perez, Benjamin Lopez [1 ]
G-Bustelo, B. Cristina Pelayo [1 ]
Anzola, John Petearson [2 ]
机构
[1] Univ Oviedo, Dept Comp Sci, Oviedo 33007, Spain
[2] Fdn Univ Los Libertadores, Fac Ingn & Ciencias Basicas Ciencias, Dept Elect & Mechatron, Bogota 111221, Colombia
关键词
Bearing fault; deep learning; industry; 40; machine learning; predictive maintenance; NEURAL-NETWORK; SPECTRAL KURTOSIS; TRANSFORM;
D O I
10.1109/ACCESS.2023.3283466
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Predictive maintenance in machines aims to anticipate failures. In rotating machines, the component that suffers the most wear and tear is the bearings. Currently, based on the Industry 4.0 paradigm, advances have been made in obtaining data, specifically, vibration signals that can be used to predict deterioration using various techniques. In this study, we have applied vibration analysis to obtain features that can be used in an optimal Machine Learning model using a public dataset from CWRU, widely used in research, which contains data on bearing failures. The main objective of this research is to detect bearing failures using a minimum set of observations and selecting the minimum number of features. To achieve this, frequency domain vibration analysis, combined with envelope analysis, is utilized as an effective method for detecting bearing failures. The results were further improved by incorporating an optimal bandwidth determined using the kurtogram. When the results of the envelope analysis are applied to various machine learning models, using the calculated amplitudes as predictors, the Kernel Naive Bayes model achieved an accuracy of 94.4%. Meanwhile, the Decision Tree (Fine Tree) and KNN (Fine KNN) models demonstrate exceptional accuracy, achieving a perfect accuracy rate of 100%.
引用
收藏
页码:57796 / 57805
页数:10
相关论文
共 50 条
  • [41] Optimum IMFs Selection Based Envelope Analysis of Bearing Fault Diagnosis in Plunger Pump
    Du, Wenliao
    Wang, Zhiyang
    Gong, Xiaoyun
    Wang, Liangwen
    Luo, Guofu
    SHOCK AND VIBRATION, 2016, 2016
  • [42] Graph-based feature engineering for enhanced machine learning in rolling element bearing fault diagnosis
    Hosseini, Seyed Mohammad
    Dibaji, Abolfazl
    Sulaimany, Sadegh
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [43] Model-based fault diagnosis in electric drives using machine learning
    Murphey, Yi Lu
    Abul Masrur, M.
    Chen, ZhiHang
    Zhang, Baifang
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2006, 11 (03) : 290 - 303
  • [44] Machine Learning-based Bearing Fault Classification Using Higher Order Spectral Analysis
    Sharma, Anju
    Patra, G. K.
    Naidu, V. P. S.
    DEFENCE SCIENCE JOURNAL, 2024, 74 (04) : 505 - 516
  • [45] Machine Learning Methods for Fault Diagnosis in AC Microgrids: A Systematic Review
    Zaben, Muiz M.
    Worku, Muhammed Y.
    Hassan, Mohamed A.
    Abido, Mohammad A.
    IEEE ACCESS, 2024, 12 : 20260 - 20298
  • [46] Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images
    Choudhary, Anurag
    Mian, Tauheed
    Fatima, Shahab
    MEASUREMENT, 2021, 176
  • [47] A Comparative Review of Sentimental Analysis Using Machine Learning and Deep Learning Approaches
    Nagelli, Archana
    Saleena, B.
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2023, 22 (03)
  • [48] Bearing fault diagnosis in induction machine based on current analysis using high-resolution technique
    Djeddi, Mounir
    Granjon, Pierre
    Leprettre, Benoit
    2007 IEEE INTERNATIONAL SYMPOSIUM ON DIAGNOSTICS FOR ELECTRIC MACHINES, POWER ELECTRONICS & DRIVES, 2007, : 182 - +
  • [49] Bearing fault diagnosis with auto-encoder extreme learning machine: A comparative study
    Mao, Wentao
    He, Jianliang
    Li, Yuan
    Yan, Yunju
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2017, 231 (08) : 1560 - 1578
  • [50] A novel Roller Bearing Fault Diagnosis Method based on the Wavelet Extreme Learning Machine
    Xin Yu
    Li Shunming
    Wang Jingrui
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 504 - 509