A p-adic Maass-Shimura operator on Mumford curves

被引:0
作者
Longo, Matteo [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
来源
ANNALES MATHEMATIQUES DU QUEBEC | 2023年 / 47卷 / 01期
关键词
p-adic uniformisation; Shimura curves; Maass-Shimura operators; ELLIPTIC-CURVES; HEEGNER CYCLES; MODULAR-FORMS; F-ISOCRYSTALS; COHOMOLOGY; SYSTEMS;
D O I
10.1007/s40316-022-00193-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a p-adic Maass-Shimura operator in the context of Mumford curves defined by [15]. We prove that this operator arises from a splitting of the Hodge filtration, thus answering a question in [15]. We also study the relation of this operator with generalized Heegner cycles, in the spirit of [1, 4, 19, 28].
引用
收藏
页码:139 / 175
页数:37
相关论文
共 44 条
  • [11] Chambert-Loir A., 1998, Expo. Math, V16, P333
  • [12] Darmon H., 2004, CBMS REGIONAL C SERI, V101
  • [13] deJong A.J., 1998, P INT C MATH BERL, P259
  • [14] Drinfeld V. G., 1976, FUNKT ANAL PRIL, V10, P29
  • [15] Faltings G, 1997, J ALGEBRAIC GEOM, V6, P1
  • [16] Franc Cameron, 2011, THESIS MCGILL U CANA
  • [17] Grothendieck Alexandre, 1974, SEMINAIRE MATH SUPER
  • [18] HARRIS M, 1981, ANN SCI ECOLE NORM S, V14, P77
  • [19] Hashimoto K, 1995, OSAKA J MATH, V32, P533
  • [20] Hida H., 1993, ELEMENTARY THEORY FU, V26, DOI [10.1017/CBO9780511623691, DOI 10.1017/CBO9780511623691]