On the moduli space curvature at infinity

被引:9
作者
Marchesano, Fernando [1 ]
Melotti, Luca [1 ,2 ]
Paoloni, Lorenzo [1 ]
机构
[1] Inst Fis Teor UAM CSIC, C Nicolas Cabrera 13-15, Madrid 28049, Spain
[2] Univ Autonoma Madrid, Dept Fis Teor, Madrid 28049, Spain
关键词
Superstring Vacua; M-Theory; Differential and Algebraic Geometry; Supersymmetric Effective Theories; SUPERGRAVITY; TRANSITIONS; SURFACES; GEOMETRY; STRINGS; LIMIT;
D O I
10.1007/JHEP02(2024)103
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We analyse the scalar curvature of the vector multiplet moduli space MXVM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{M}}_X<^>{\textrm{VM}} $$\end{document} of type IIA string theory compactified on a Calabi-Yau manifold X. While the volume of MXVM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{M}}_X<^>{\textrm{VM}} $$\end{document} is known to be finite, cases have been found where the scalar curvature diverges positively along trajectories of infinite distance. We classify the asymptotic behaviour of the scalar curvature for all large volume limits within MXVM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{M}}_X<^>{\textrm{VM}} $$\end{document}, for any choice of X, and provide the source of the divergence both in geometric and physical terms. Geometrically, there are effective divisors whose volumes do not vary along the limit. Physically, the EFT subsector associated to such divisors is decoupled from gravity along the limit, and defines a rigid N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 field theory with a non-vanishing moduli space curvature Rrigid. We propose that the relation between scalar curvature divergences and field theories decoupled from gravity is a common trait of moduli spaces compatible with quantum gravity.
引用
收藏
页数:44
相关论文
共 71 条
  • [1] Branes, superpotentials and superconformal fixed points
    Aharony, O
    Hanany, A
    [J]. NUCLEAR PHYSICS B, 1997, 504 (1-2) : 239 - 271
  • [2] Aharony O, 1998, J HIGH ENERGY PHYS
  • [3] Rigid limit for hypermultiplets and five-dimensional gauge theories
    Alexandrov, Sergei
    Banerjee, Sibasish
    Longhi, Pietro
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (01):
  • [4] The Weak Gravity Conjecture and BPS Particles
    Alim, Murad
    Heidenreich, Ben
    Rudelius, Tom
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2021, 69 (11-12):
  • [5] N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map
    Andrianopoli, L
    Bertolini, M
    Ceresole, A
    DAuria, R
    Ferrara, S
    Fre, P
    Magri, T
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1997, 23 (02) : 111 - 189
  • [6] Engineering small flux superpotentials and mass hierarchies
    Bastian, Brice
    Grimm, Thomas W.
    van de Heisteeg, Damian
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (02)
  • [7] Instanton corrections and Emergent Strings
    Baume, Florent
    Marchesano, Fernando
    Wiesner, Max
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)
  • [8] The rigid limit in special Kahler geometry - from K3-fibrations to special Riemann surfaces: a detailed case study
    Billo, M
    Denef, F
    Fre, P
    Pesando, I
    Troost, W
    Van Proeyen, A
    Zanon, D
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (08) : 2083 - 2152
  • [9] Blumenhagen R, 2024, Arxiv, DOI arXiv:2309.11551
  • [10] Brennan T. D., 2017, P SCI TASI