Deep learning at the edge enables real-time streaming ptychographic imaging

被引:22
作者
Babu, Anakha V. [1 ,4 ]
Zhou, Tao [1 ]
Kandel, Saugat [1 ]
Bicer, Tekin [1 ]
Liu, Zhengchun [1 ]
Judge, William [2 ]
Ching, Daniel J. [1 ]
Jiang, Yi [1 ]
Veseli, Sinisa [1 ]
Henke, Steven [1 ]
Chard, Ryan [1 ]
Yao, Yudong [1 ]
Sirazitdinova, Ekaterina [3 ]
Gupta, Geetika [3 ]
Holt, Martin V. [1 ]
Foster, Ian T. [1 ]
Miceli, Antonino [1 ]
Cherukara, Mathew J. [1 ]
机构
[1] Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA
[2] Univ Illinois, Dept Chem, Chicago, IL USA
[3] NVIDIA Corp, Santa Clara, CA USA
[4] KLA Corp, Ann Arbor, MI USA
关键词
ELECTRON PTYCHOGRAPHY; NEURAL-NETWORKS; TOMOGRAPHY; MICROSCOPY;
D O I
10.1038/s41467-023-41496-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coherent imaging techniques provide an unparalleled multi-scale view of materials across scientific and technological fields, from structural materials to quantum devices, from integrated circuits to biological cells. Driven by the construction of brighter sources and high-rate detectors, coherent imaging methods like ptychography are poised to revolutionize nanoscale materials characterization. However, these advancements are accompanied by significant increase in data and compute needs, which precludes real-time imaging, feedback and decision-making capabilities with conventional approaches. Here, we demonstrate a workflow that leverages artificial intelligence at the edge and high-performance computing to enable real-time inversion on X-ray ptychography data streamed directly from a detector at up to 2 kHz. The proposed AI-enabled workflow eliminates the oversampling constraints, allowing low-dose imaging using orders of magnitude less data than required by traditional methods. Next-generation light sources and fast detectors enable unparalleled materials characterization, but increased data rates and compute needs preclude real-time analysis. Here, Babu et al. leverage high-performance computing and AI@Edge to achieve real-time, low-dose imaging on streaming data at 2 KHz.
引用
收藏
页数:9
相关论文
共 51 条
[1]   fairDMS: Rapid Model Training by Data and Model Reuse [J].
Ali, Ahsan ;
Sharma, Hemant ;
Kettimuthu, Rajkumar ;
Kenesei, Peter ;
Trujillo, Dennis ;
Miceli, Antonino ;
Foster, Ian ;
Coffee, Ryan ;
Thayer, Jana ;
Liu, Zhengchun .
2022 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2022), 2022, :394-405
[2]  
[Anonymous], 2021, Video Recordings for AI enabled on the Fly Phase Retrieval
[3]  
[Anonymous], 2021, pvAccess
[4]  
[Anonymous], 2021, Nvidia, Jetson AGX Xavier
[5]  
[Anonymous], 2021, APS Scientific Computing Strategy
[6]  
Bicer T., 2021, SMOKY MOUNTAINS COMP, P173
[7]   The PILATUS 1M detector [J].
Broennimann, C ;
Eikenberry, EF ;
Henrich, B ;
Horisberger, R ;
Huelsen, G ;
Pohl, E ;
Schmitt, B ;
Schulze-Briese, C ;
Suzuki, M ;
Tomizaki, T ;
Toyokawa, H ;
Wagner, A .
JOURNAL OF SYNCHROTRON RADIATION, 2006, 13 :120-130
[8]   Rapid 3D nanoscale coherent imaging via physics-aware deep learning [J].
Chan, Henry ;
Nashed, Youssef S. G. ;
Kandel, Saugat ;
Hruszkewycz, Stephan O. ;
Sankaranarayanan, Subramanian K. R. S. ;
Harder, Ross J. ;
Cherukara, Mathew J. .
APPLIED PHYSICS REVIEWS, 2021, 8 (02)
[9]   Deep-Learning Electron Diffractive Imaging [J].
Chang, Dillan J. ;
O'Leary, Colum M. ;
Su, Cong ;
Jacobs, Daniel A. ;
Kahn, Salman ;
Zettl, Alex ;
Ciston, Jim ;
Ercius, Peter ;
Miao, Jianwei .
PHYSICAL REVIEW LETTERS, 2023, 130 (01)
[10]   funcX: A Federated Function Serving Fabric for Science [J].
Chard, Ryan ;
Babuji, Yadu ;
Li, Zhuozhao ;
Skluzacek, Tyler ;
Woodard, Anna ;
Blaiszik, Ben ;
Foster, Ian ;
Chard, Kyle .
PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING, HPDC 2020, 2020, :65-76