Event-Triggered Distributed Moving Horizon Estimation Over Wireless Sensor Networks

被引:11
作者
Huang, Zenghong [1 ]
Lv, Weijun [1 ]
Liu, Chang [1 ]
Xu, Yong [1 ]
Rutkowski, Leszek [2 ,3 ]
Huang, Tingwen [4 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Prov Key Lab Intelligent Decis & Cooperat Control, Guangzhou 510006, Peoples R China
[2] AGH Univ Krakow, PL-30059 Krakow, Poland
[3] AGH Univ Krakow, Syst Res Inst, Polish Acad Sci, PL-30059 Krakow, Poland
[4] Texas A&M Univ Qatar, Dept Sci Program, Doha 23874, Qatar
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Estimation; Wireless sensor networks; Network topology; Informatics; Topology; Robustness; Minimization; Boundedness; distributed moving horizon estimation (DMHE); event-triggered communication; sensor networks; STATE ESTIMATION; CONSENSUS; SYSTEMS; CONVERGENCE;
D O I
10.1109/TII.2023.3316174
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes a fully distributed moving horizon estimation method with an event-triggered communication strategy over wireless sensor networks. The proposed method calculates a local state estimation of each sensor by minimizing a quadratic objective function, which involves a fused arrival cost that is computed in a distributed manner. This approach adjusts data transmission rate by selectively transmitting local information and allows the incorporation of constraints on the noise and state variables. In addition, the estimation error is proved to be uniformly bounded in the mean square sense under the condition that the network topology is strongly connected and the system is collectively observable. Finally, a target tracking example is presented to demonstrate the validity of the proposed approach.
引用
收藏
页码:4218 / 4226
页数:9
相关论文
共 27 条
[1]   Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes [J].
Alessandri, Angelo ;
Baglietto, Marco ;
Battistelli, Giorgio .
AUTOMATICA, 2008, 44 (07) :1753-1765
[2]   Distributed secure state estimation for cyber-physical systems under sensor attacks [J].
An, Liwei ;
Yang, Guang-Hong .
AUTOMATICA, 2019, 107 :526-538
[3]   Consensus-Based Linear and Nonlinear Filtering [J].
Battistelli, G. ;
Chisci, L. ;
Mugnai, G. ;
Farina, A. ;
Graziano, A. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (05) :1410-1415
[4]   Distributed Moving-Horizon Estimation With Arrival-Cost Consensus [J].
Battistelli, Giorgio .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (08) :3316-3323
[5]   A distributed Kalman filter with event-triggered communication and guaranteed stability [J].
Battistelli, Giorgio ;
Chisci, Luigi ;
Selvi, Daniela .
AUTOMATICA, 2018, 93 :75-82
[6]   A Survey on Model-Based Distributed Control and Filtering for Industrial Cyber-Physical Systems [J].
Ding, Derui ;
Han, Qing-Long ;
Wang, Zidong ;
Ge, Xiaohua .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (05) :2483-2499
[7]   Optimal Design of Islanded Microgrids Considering Distributed Dynamic State Estimation [J].
El-Sharafy, Mohamed Zaki ;
Saxena, Shivam ;
Farag, Hany E. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (03) :1592-1603
[8]   Resilient Consensus-Based Distributed Filtering: Convergence Analysis Under Stealthy Attacks [J].
Huang, Jiahao ;
Tang, Yang ;
Yang, Wen ;
Li, Fangfei .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (07) :4878-4888
[9]   Distributed Moving Horizon Estimation Over Wireless Sensor Networks: A Matrix-Weighted Consensus Approach [J].
Huang, Zenghong ;
Guo, Yuru ;
Peng, Hui ;
Xu, Yong .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (04) :1665-1669
[10]   Distributed Kalman Consensus Filter for Estimation With Moving Targets [J].
Lian, Bosen ;
Wan, Yan ;
Zhang, Ya ;
Liu, Mushuang ;
Lewis, Frank L. ;
Chai, Tianyou .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (06) :5242-5254