In Situ Raman Methodology for Online Analysis of CO2 and H2O Loadings in a Water-Lean Solvent for CO2 Capture

被引:5
作者
Lines, Amanda M. [1 ,3 ]
Barpaga, Dushyant [1 ]
Zheng, Richard F. [2 ]
Collett, James R. [1 ]
Heldebrant, David J. [1 ,3 ]
Bryan, Samuel A. [1 ,3 ]
机构
[1] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[2] STARS Technol Corp, Richland, WA 99354 USA
[3] Washington State Univ, Pullman, WA 99164 USA
关键词
REAL-TIME ANALYSIS; MULTIVARIATE-ANALYSIS; QUANTITATIVE-ANALYSIS; MODEL MAINTENANCE; CARBON CAPTURE; FT-IR; SPECTROSCOPY; ABSORPTION; GAS; QUANTIFICATION;
D O I
10.1021/acs.analchem.3c02281
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Carbon capture represents a key pathway to meeting climate change mitigation goals. Powerful next-generation solvent-based capture processes are under development by many researchers, but optimization and testing would be significantly aided by integrating in situ monitoring capability. Further, real-time water analysis in water-lean solvents offers the potential to maintain their water balance in operation. To explore data acquisition techniques in depth for this purpose, Raman spectra of CO2, H2O, and a single-component water-lean solvent, N-(2-ethoxyethyl)-3-morpholinopropan-1-amine (2-EEMPA) were collected at different CO2 and H2O concentrations using an in situ Raman cell. The quantification of CO2 and H2O loadings in 2-EEMPA was done by principal component regression and partial least squares methods with analysis of uncertainties. We conclude with discussions on how this simultaneous online analysis method to quantify CO2 and H2O loadings can be an important tool to enable the optimal efficiency of water-lean CO2 solvents while also maintaining the critical water balance under operating conditions relevant to post-combustion CO2 capture.
引用
收藏
页码:15566 / 15576
页数:11
相关论文
共 49 条
[1]   Separation of CO2 from flue gas:: A review [J].
Aaron, D ;
Tsouris, C .
SEPARATION SCIENCE AND TECHNOLOGY, 2005, 40 (1-3) :321-348
[2]  
Abdi H., 2007, Encyclopedia of measurement and statistics
[3]  
Adams D., 2007, CAPTURING CO2
[4]   DFT, FT-Raman, FT-IR, HOMO-LUMO and NBO studies of 4-Methylmorpholine [J].
Balachandran, V. ;
Mahalakshmi, G. ;
Lakshmi, A. ;
Janaki, A. .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2012, 97 :1101-1110
[5]   Evaluation of a Third Generation Single-Component Water-Lean Diamine Solvent for Post-Combustion CO2 Capture [J].
Barpaga, Dushyant ;
Jiang, Yuan ;
Zheng, Richard F. ;
Malhotra, Deepika ;
Koech, Phillip K. ;
Zwoster, Andy ;
Mathias, Paul M. ;
Heldebrant, David J. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (14) :4522-4528
[6]  
Beebe K. R., 1998, CHEMOMETRICS PRACTIC
[7]   Principal component analysis [J].
Bro, Rasmus ;
Smilde, Age K. .
ANALYTICAL METHODS, 2014, 6 (09) :2812-2831
[8]  
Bryan SA, 2006, ABSTR PAP AM CHEM S, V232, P852
[9]  
Bui M, 2018, ENERG ENVIRON SCI, V11, P1062, DOI [10.1039/c7ee02342a, 10.1039/C7EE02342A]
[10]   Molecular-Level Overhaul of γ-Aminopropyl Aminosilicone/Triethylene Glycol Post-Combustion CO2-Capture Solvents [J].
Cantu, David C. ;
Malhotra, Deepika ;
Nguyen, Manh-Thuong ;
Koech, Phillip K. ;
Zhang, Difan ;
Glezakou, Vassiliki-Alexandra ;
Rousseau, Roger ;
Page, Jordan ;
Zheng, Richard ;
Perry, Robert J. ;
Heldebrant, David J. .
CHEMSUSCHEM, 2020, 13 (13) :3429-3438