The hyperentanglement-based quantum secure direct communication protocol with single-photon measurement

被引:12
作者
Xiao, Yu-Xiang [1 ,2 ,3 ]
Zhou, Lan [4 ]
Zhong, Wei [3 ]
Du, Ming-Ming [1 ,2 ]
Sheng, Yu-Bo [1 ,2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Flexible Elect Future Technol, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum secure direct communication; Hyperentanglement; Single-photon measurement; Secret message capacity; ENTANGLEMENT PURIFICATION; TELEPORTATION;
D O I
10.1007/s11128-023-04097-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum secure direct communication (QSDC) can directly transmit secret messages through quantum channel without keys. The typical entanglement-based QSDC protocol encodes in one degree of freedom and requires the Bell state measurement (BSM). In the paper, we propose a hyperentanglement-based QSDC protocol with the single-photon measurement. Comparing with the BSM, the single-photon measurement is easier to implement and has higher success probability. The adoption of hyperentanglement can increase the capacity of each photon pair, and thus increase the secret message capacity. The message sender can transmit 2 bits of messages with a hyperentangled photon pair in theory. We make the numerical simulations to study the secret message capacity against the collective attack and photon number splitting attack. Our QSDC protocol has potential applications in the future quantum communication field.
引用
收藏
页数:18
相关论文
共 81 条
[1]   Generation of hyperentangled photon pairs [J].
Barreiro, JT ;
Langford, NK ;
Peters, NA ;
Kwiat, PG .
PHYSICAL REVIEW LETTERS, 2005, 95 (26)
[2]  
Bennett C., 1984, Reviews of Modern Physics, P175, DOI [DOI 10.1103/REVMODPHYS.74.145, 10.1016/j.tcs.2014.05.025, DOI 10.1016/J.TCS.2014.05.025]
[3]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[4]   Device-independent quantum key distribution using random quantum states [J].
Bera, Subhankar ;
Gupta, Shashank ;
Majumdar, A. S. .
QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
[5]   Continuous-Variable Quantum Secure Direct Communication Based on Gaussian Mapping [J].
Cao, Zhengwen ;
Wang, Lei ;
Liang, Kexin ;
Chai, Geng ;
Peng, Jinye .
PHYSICAL REVIEW APPLIED, 2021, 16 (02)
[6]   Three-step three-party quantum secure direct communication [J].
Chen, Shan-Shan ;
Zhou, Lan ;
Zhong, Wei ;
Sheng, Yu-Bo .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (09)
[7]   An integrated space-to-ground quantum communication network over 4,600 kilometres [J].
Chen, Yu-Ao ;
Zhang, Qiang ;
Chen, Teng-Yun ;
Cai, Wen-Qi ;
Liao, Sheng-Kai ;
Zhang, Jun ;
Chen, Kai ;
Yin, Juan ;
Ren, Ji-Gang ;
Chen, Zhu ;
Han, Sheng-Long ;
Yu, Qing ;
Liang, Ken ;
Zhou, Fei ;
Yuan, Xiao ;
Zhao, Mei-Sheng ;
Wang, Tian-Yin ;
Jiang, Xiao ;
Zhang, Liang ;
Liu, Wei-Yue ;
Li, Yang ;
Shen, Qi ;
Cao, Yuan ;
Lu, Chao-Yang ;
Shu, Rong ;
Wang, Jian-Yu ;
Li, Li ;
Liu, Nai-Le ;
Xu, Feihu ;
Wang, Xiang-Bin ;
Peng, Cheng-Zhi ;
Pan, Jian-Wei .
NATURE, 2021, 589 (7841) :214-+
[8]   Efficient quantum secure direct communication with complete Bell-state measurement [J].
Gao, Cheng-Yan ;
Guo, Peng-Liang ;
Ren, Bao-Cang .
Quantum Engineering, 2021, 3 (04)
[9]   How to share a quantum secret [J].
Cleve, R ;
Gottesman, D ;
Lo, HK .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :648-651
[10]   Secure direct communication with a quantum one-time pad [J].
Deng, FG ;
Long, GL .
PHYSICAL REVIEW A, 2004, 69 (05) :052319-1