Ribbon Yetter-Drinfeld modules and tangle invariants

被引:0
作者
Habiro, Kazuo [1 ]
Kotorii, Yuka [2 ,3 ,4 ]
机构
[1] Kyoto Univ, Dept Math, Kitashirakawa Oiwakecho,Sakyo Ku, Kyoto 6068502, Japan
[2] Hiroshima Univ, Grad Sch Adv Sci & Engn, 1-7-1 Kagamiyama Higashi, Hiroshima, Hiroshima 7398521, Japan
[3] WPI Hiroshima Univ, Int Inst Sustainabil Knotted Chiral Meta Matter WP, Hiroshima, Hiroshima 7390046, Japan
[4] RIKEN, Interdisciplinary Theoret & Math Sci Program, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
关键词
Hopf algebra; Yetter-Drinfeld module; monoidal category; ribbon category; tangle;
D O I
10.1142/S179352532350019X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define notions of pivotal and ribbon objects in a monoidal category. These constructions give pivotal or ribbon monoidal categories from a monoidal category which is not necessarily with duals. We apply this construction to the braided monoidal category of Yetter-Drinfeld modules over a Hopf algebra. This gives rise to the notion of ribbon Yetter-Drinfeld modules over a Hopf algebra, which form ribbon categories. This gives an invariant of tangles.
引用
收藏
页数:20
相关论文
共 12 条
[1]  
ANDRUSKIEWITSCH AG99 N., 1999, Bol. Acad. Nac. Cienc. (Cordoba), V63, P45
[2]  
[Anonymous], 1995, GRADUATE TEXTS MATH, V115
[3]  
Drinfeld V G., 1988, J SOVIET MATH, V41, P898, DOI [10.1007/BF01247086, DOI 10.1007/BF01247086]
[4]   BRAIDED COMPACT CLOSED CATEGORIES WITH APPLICATIONS TO LOW DIMENSIONAL TOPOLOGY [J].
FREYD, PJ ;
YETTER, DN .
ADVANCES IN MATHEMATICS, 1989, 77 (02) :156-182
[5]  
Mac Lane S, 1998, GRADUATE TEXTS MATH, V5
[6]   DOUBLES OF QUASI-TRAINGULAR HOPF-ALGEBRAS [J].
MAJID, S .
COMMUNICATIONS IN ALGEBRA, 1991, 19 (11) :3061-3073
[7]   INVARIANTS OF 3-MANIFOLDS VIA LINK POLYNOMIALS AND QUANTUM GROUPS [J].
RESHETIKHIN, N ;
TURAEV, VG .
INVENTIONES MATHEMATICAE, 1991, 103 (03) :547-597
[8]  
Selinger P, 2011, LECT NOTES PHYS, V813, P289, DOI 10.1007/978-3-642-12821-9_4
[9]   The pivotal cover and Frobenius-Schur indicators [J].
Shimizu, Kenichi .
JOURNAL OF ALGEBRA, 2015, 428 :357-402
[10]   TORTILE TENSOR CATEGORIES [J].
SHUM, MC .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 93 (01) :57-110