Deriving spatial wave data from a network of buoys and ships

被引:8
作者
Mounet, Raphael E. G. [1 ,2 ]
Chen, Jiaxin [3 ]
Nielsen, Ulrik D. [1 ,2 ]
Brodtkorb, Astrid H. [2 ]
Pillai, Ajit C. [3 ]
Ashton, Ian G. C. [3 ]
Steele, Edward C. C. [4 ]
机构
[1] Tech Univ Denmark, DTU Construct, DK-2800 Lyngby, Denmark
[2] Norwegian Univ Sci & Technol, Ctr Autonomous Marine Operat & Syst NTNU AMOS, Dept Marine Technol, NO-7052 Trondheim, Norway
[3] Univ Exeter, Fac Environm Sci & Econ, Dept Engn, Renewable Energy Grp, Penryn TR10 9FE, England
[4] Met Off, FitzRoy Rd, Exeter EX1 3PB, Devon, England
基金
英国工程与自然科学研究理事会;
关键词
Sea state estimation; Spectral wave model; Ship motions; Wave-buoy analogy; Machine learning; Metocean conditions; COASTAL REGIONS; MODEL; SPECTRA;
D O I
10.1016/j.oceaneng.2023.114892
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The real-time provision of high-quality estimates of the ocean wave parameters at appropriate spatial resolu-tions are essential for the sustainable operations of marine structures. Machine learning affords considerable opportunity for providing additional value from sensor networks, fusing metocean data collected by various platforms. Exploiting the ship-as-a-wave-buoy concept, this article proposes the integration of vessel-based observations into a wave-nowcasting framework. Surrogate models are trained using a high-fidelity physics-based nearshore wave model to learn the spatial correlations between grid points within a computational domain. The performance of these different models are evaluated in a case study to assess how well wave parameters estimated through the spectral analysis of ship motions can perform as inputs to the surrogate system, to replace or complement traditional wave buoy measurements. The benchmark study identifies the advantages and limitations inherent in the methodology incorporating ship-based wave estimates to improve the reliability and availability of regional sea state information.
引用
收藏
页数:19
相关论文
共 50 条
[11]   A new interpolation method for observation data obtained from ARGO buoys system [J].
Zakharova, N. B. ;
Agoshkov, V. I. ;
Parmuzin, E. I. .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2013, 28 (01) :67-84
[12]   Deriving snow-cover depletion curves for different spatial scales from remote sensing and snow telemetry data [J].
Fassnacht, Steven R. ;
Sexstone, Graham A. ;
Kashipazha, Amir H. ;
Ignacio Lopez-Moreno, Juan ;
Jasinski, Michael F. ;
Kampf, Stephanie K. ;
Von Thaden, Benjamin C. .
HYDROLOGICAL PROCESSES, 2016, 30 (11) :1708-1717
[13]   Estimation of spatial demographic maps from polymorphism data using a neural network [J].
Smith, Chris C. R. ;
Patterson, Gilia ;
Ralph, Peter L. ;
Kern, Andrew D. .
MOLECULAR ECOLOGY RESOURCES, 2024, 24 (07)
[14]   Deriving fractional acoustic wave equations from mechanical and thermal constitutive equations [J].
Holm, Sverre ;
Nasholm, Sven Peter ;
Prieur, Fabrice ;
Sinkus, Ralph .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) :621-629
[15]   Data-driven state of health monitoring for maritime battery systems - a case study on sensor data from ships in operation [J].
Liang, Qin ;
Vanem, Erik ;
Xue, Yongjian ;
Alnes, Oystein ;
Zhang, Heke ;
Lam, James ;
Bruvik, Katrine .
SHIPS AND OFFSHORE STRUCTURES, 2023,
[16]   Deriving moderate spatial resolution leaf area index estimates from coarser spatial resolution satellite products [J].
Gokool, S. ;
Kunz, R. P. ;
Toucher, M. .
REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2022, 26
[17]   Deriving Equations from Sensor Data Using Dimensional Function Synthesis [J].
Wang, Youchao ;
Willis, Sam ;
Tsoutsouras, Vasileios ;
Stanley-Marbell, Phillip .
ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2019, 18 (05)
[18]   Deriving loudness growth functions from categorical loudness scaling data [J].
Wroblewski, Marcin ;
Rasetshwane, Daniel M. ;
Neely, Stephen T. ;
Jesteadt, Walt .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2017, 142 (06) :3660-3669
[19]   Using an improved back propagation neural network to study spatial distribution of sunshine illumination from sensor network data [J].
Hu Junguo ;
Zhou Guomo ;
Xu Xiaojun .
ECOLOGICAL MODELLING, 2013, 266 :86-96
[20]   Spatial Averaging of HF Radar Data for Wave Measurement Applications [J].
Wyatt, Lucy R. ;
Jaffres, Jasmine B. D. ;
Heron, Mal L. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2013, 30 (09) :2216-2224