Macroalgal habitats support a sustained flux of floating biomass but limited carbon export beyond a Greenland fjord

被引:11
作者
Ager, Thomas Gjerluff [1 ,2 ]
Krause-Jensen, Dorte [2 ,3 ]
Olesen, Birgit [1 ,3 ]
Carlson, Daniel F. [4 ]
Winding, Mie Hylstofte Sichlau [5 ]
Sejr, Mikael K. [2 ,3 ]
机构
[1] Aarhus Univ, Dept Biol, DK-8000 Aarhus C, Denmark
[2] Aarhus Univ, Dept Ecosci, DK-8000 Aarhus C, Denmark
[3] Aarhus Univ, Arctic Res Ctr, DK-8000 Aarhus C, Denmark
[4] Helmholtz Zentrum Hereon, Inst Carbon Cycles, Opt Oceanog, D-21502 Geesthacht, Germany
[5] Greenland Inst Nat Resources, Greenland Climate Res Ctr, Nuuk 3900, Greenland
关键词
Blue carbon; Macroalgae; Arctic; Carbon export; Floating macroalgae; HIGH-ARCTIC FJORD; ATMOSPHERIC CORRECTION; MARINE MACROPHYTES; DEPTH DISTRIBUTION; SEAWEED; SEA; FATE; KELP; COMMUNITIES; DYNAMICS;
D O I
10.1016/j.scitotenv.2023.162224
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Despite growing attention on the contribution of macroalgae to carbon cycling and sequestration (blue carbon), more ob-servational data is needed to constrain current estimates. In this study, we estimate the floating macroalgal carbon flux within and beyond a large sub-Arctic fjord system, Nuup Kangerlua, Greenland, which could potentially reach carbon sinks. Our study estimates 1) the fjord-scale area with macroalgal coverage and barrens caused by sea urchin grazing, 2) the floating macroalgal biomass in the fjord, and 3) the annual export flux of floating macroalgae out of the fjord system. ROV surveys documented that macroalgal habitats cover 32 % of the seafloor within the photic zone (0-30 m) with an average coverage of 39.6, 22, and 7.2 % in the depth intervals 0-10, 10-20, and 20-30 m, respectively. 15 % of the area suitable for macroalgae was denuded by sea urchin grazing. Floating macroalgae were common with an average biomass of 55 kg wet weight km(-2). Densities and species composition varied seasonally with the highest levels after storms. The floating biomass was composed of intertidal macroalgal species (58 %) (Fucus vesiculosus, Fucus distichus, and Ascophyllumnodosum) and kelps (42 %) (Saccharinalongicruris, S. latissima, and Alaria esculenta). We deployed surface GPS drifters to simulate floating macroalgal trajectories and velocity. Data indicated that 80 % of the floating biomass is retained in the fjord where its fate in relation to long-term sequestration is unknown. Export beyond the fjord was limited and indicated an annual floating macroalgal export beyond the fjord of only 6.92 t Cyr(-1), which is equal to similar to 0.02 % of the annual net primary production. Our findings suggest that floating macroalgae support a limited blue carbon potential beyond this fjord and that future research should focus on the fate of retained floating macroalgae and subsurface export to resolve the connectivity between macroalgal habitats and long-term carbon sinks.
引用
收藏
页数:11
相关论文
共 69 条
  • [1] Major Expansion of Marine Forests in a Warmer Arctic
    Assis, Jorge
    Serrao, Ester A.
    Duarte, Carlos M.
    Fragkopoulou, Eliza
    Krause-Jensen, Dorte
    [J]. FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [2] Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996-1998 and 2012-2014 reflect Arctic warming
    Bartsch, Inka
    Paar, Martin
    Fredriksen, Stein
    Schwanitz, Max
    Daniel, Claudia
    Hop, Haakon
    Wiencke, Christian
    [J]. POLAR BIOLOGY, 2016, 39 (11) : 2021 - 2036
  • [3] Surface Drift and Dispersion in a Multiply Connected Fjord System
    Blanken, Hauke
    Hannah, Charles
    Jody, M. Klymak
    Juhasz, Tamas
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2020, 125 (02)
  • [4] Growth and production of sea urchin Strongylocentrotus droebachiensis in a high-Arctic fjord, and growth along a climatic gradient (64 to 77°N)
    Blicher, Martin E.
    Rysgaard, Seren
    Sejr, Mikael K.
    [J]. MARINE ECOLOGY PROGRESS SERIES, 2007, 341 : 89 - 102
  • [5] Biomass, photosynthesis and growth of Laminaria saccharina in a high-arctic fjord, NE Greenland
    Borum, J
    Pedersen, MF
    Krause-Jensen, D
    Christensen, PB
    Nielsen, K
    [J]. MARINE BIOLOGY, 2002, 141 (01) : 11 - 19
  • [6] Maker Buoy Variants for Water Level Monitoring and Tracking Drifting Objects in Remote Areas of Greenland
    Carlson, Daniel F.
    Pavalko, Wayne J.
    Petersen, Dorthe
    Olsen, Martin
    Hass, Andreas E.
    [J]. SENSORS, 2020, 20 (05)
  • [7] Bergy Bit and Melt Water Trajectories in Godthabsfjord (SW Greenland) Observed by the Expendable Ice Tracker
    Carlson, Daniel F.
    Boone, Wieter
    Meire, Lorenz
    Abermann, Jakob
    Rysgaard, Soren
    [J]. FRONTIERS IN MARINE SCIENCE, 2017, 4
  • [8] Potential export of unattached benthic macroalgae to the deep sea through wind-driven Langmuir circulation
    Dierssen, H. M.
    Zimmerman, R. C.
    Drake, L. A.
    Burdige, D. J.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2009, 36
  • [9] Global estimates of the extent and production of macroalgal forests
    Duarte, Carlos M.
    Gattuso, Jean-Pierre
    Hancke, Kasper
    Gundersen, Hege
    Filbee-Dexter, Karen
    Pedersen, Morten F.
    Middelburg, Jack J.
    Burrows, Michael T.
    Krumhansl, Kira A.
    Wernberg, Thomas
    Moore, Pippa
    Pessarrodona, Albert
    Orberg, Sarah B.
    Pinto, Isabel S.
    Assis, Jorge
    Queiros, Ana M.
    Smale, Dan A.
    Bekkby, Trine
    Serrao, Ester A.
    Krause-Jensen, Dorte
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2022, 31 (07): : 1422 - 1439
  • [10] Duarte CM, 2013, NAT CLIM CHANGE, V3, P961, DOI [10.1038/NCLIMATE1970, 10.1038/nclimate1970]