Molecular dynamics predictions of transport properties for carbon dioxide hydrates under pre-nucleation conditions using TIP4P/Ice water and EPM2, TraPPE, and Zhang carbon dioxide potentials

被引:13
作者
Guerra, Andre [1 ]
Mathews, Samuel [1 ]
Su, Jennifer Tram [1 ]
Maric, Milan [1 ]
Servio, Phillip [1 ]
Rey, Alejandro D. [1 ]
机构
[1] McGill Univ, Dept Chem Engn, Rue Univ 3610, Montreal, PQ H3A 0C5, Canada
关键词
Carbon dioxide; Gas hydrates; Molecular dynamics; Viscosity; Diffusivity; Hydrogen bonding; SELF-DIFFUSION COEFFICIENT; METHANE HYDRATE; GAS HYDRATE; NATURAL-GAS; FLUE-GAS; IRREVERSIBLE-PROCESSES; DISSOCIATION PROCESS; CRYSTAL-GROWTH; LIQUID WATER; SIMULATIONS;
D O I
10.1016/j.molliq.2023.121674
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
(1) Introduction: New technologies that leverage gas hydrates phenomena include carbon capture and sequestrations. These processes are often semi-continuous and require regulation of the system's flow properties for proper operation. Accurate computational models for the viscosity of carbon dioxide hydrate systems at pre-nucleation conditions can be important for process design and control of such technologies. (2) Methods: This work validates the viscosity predictions of molecular dynamics simula-tions using previously measured experimental data. The TIP4P/Ice force field was used to model water, while the EPM2, TraPPE, and Zhang force fields were used for carbon dioxide. The Green-Kubo and Einstein formulations of viscosity and diffusivity were used in this work. (3) Results: All force fields over -predicted viscosity when compared to experimental data, but EPM2 resulted in lower discrepancies. Additionally, EPM2 was determined to model molecular behavior expected from the macroscopic trends in viscosity with respect to temperature and pressure. (4) Conclusions: The EPM2 force field more accu-rately predicted the viscosity of carbon dioxide hydrates systems at pre-nucleation conditions relative to TraPPE and Zhang.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 99 条
[1]   Separation of CO2 from flue gas:: A review [J].
Aaron, D ;
Tsouris, C .
SEPARATION SCIENCE AND TECHNOLOGY, 2005, 40 (1-3) :321-348
[2]   A potential model for the study of ices and amorphous water:: TIP4P/Ice -: art. no. 234511 [J].
Abascal, JLF ;
Sanz, E ;
Fernández, RG ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (23)
[3]   Transport properties of carbon dioxide and methane from molecular dynamics simulations [J].
Aimoli, C. G. ;
Maginn, E. J. ;
Abreu, C. R. A. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (13)
[4]   Properties of inhibitors of methane hydrate formation via molecular dynamics simulations [J].
Anderson, BJ ;
Tester, JW ;
Borghi, GP ;
Trout, BL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (50) :17852-17862
[5]   COMPUTER-SIMULATION OF THE CRYSTAL-GROWTH AND DISSOLUTION OF NATURAL-GAS HYDRATES [J].
BAEZ, LA ;
CLANCY, P .
INTERNATIONAL CONFERENCE ON NATURAL GAS HYDRATES, 1994, 715 :177-186
[6]   Influence of Hydrated Silica Surfaces on Interfacial Water in the Presence of Clathrate Hydrate Forming Gases [J].
Bagherzadeh, S. Alireza ;
Englezos, Peter ;
Alavi, Saman ;
Ripmeester, John A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (47) :24907-24915
[7]   How Properties of Solid Surfaces Modulate the Nucleation of Gas Hydrate [J].
Bai, Dongsheng ;
Chen, Guangjin ;
Zhang, Xianren ;
Sum, Amadeu K. ;
Wang, Wenchuan .
SCIENTIFIC REPORTS, 2015, 5
[8]   Nucleation of the CO2 Hydrate from Three-Phase Contact Lines [J].
Bai, Dongsheng ;
Chen, Guangjin ;
Zhang, Xianren ;
Wang, Wenchuan .
LANGMUIR, 2012, 28 (20) :7730-7736
[9]   Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations [J].
Bai, Dongsheng ;
Zhang, Xianren ;
Chen, Guangjin ;
Wang, Wenchuan .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :7033-7041
[10]   Microsecond Molecular Dynamics Simulations of the Kinetic Pathways of Gas Hydrate Formation from Solid Surfaces [J].
Bai, Dongsheng ;
Chen, Guangjin ;
Zhang, Xianren ;
Wang, Wenchuan .
LANGMUIR, 2011, 27 (10) :5961-5967