Design of a broadband metasurface sound absorber based on Hilbert fractal

被引:4
作者
Zhang, Wenzhuo [1 ]
Zhao, Yonghui [1 ]
Ou, Yang [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Yudao St 29, Nanjing 210016, Peoples R China
关键词
Hilbert fractal; micro perforated panel; metasurface; broadband absorber; sound absorption; ACOUSTIC METAMATERIALS; ABSORPTION; MODEL;
D O I
10.1177/09544062231164511
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a new fractal-based broadband metasurface absorber is developed, which is based on the excellent space-filling ability of the Hilbert fractal. Each unit cell in absorber consists of a micro perforated panel (MPP) and a coplanar coiled cavity. In order to gain a deep insight into the sound absorption mechanism and perform a rapid design, a theoretical model for analyzing the sound absorption characteristics of the unit cell is established, in which the Fok function is used to account for the coupling effect between holes. Afterward, the absorption mechanism as well as the effects of parameter variations on absorption characteristics are investigated. To increase the space utilization, each unit cell is arranged in space according to the Hilbert fractal curve. Consequently, a metasurface absorber with 6 detuned unit cells is constructed. The multiple resonant cavities with dissimilar lengths can provide peak absorptions at multiple frequencies, thereby broadening the attenuation frequency range. Finally, the absorption performance of the designed absorber is obtained by theoretical calculations, finite element (FEM) simulations and experimental measurements, respectively. The experimental results show that a continuous absorption spectrum is achieved in the range of 855-1359 Hz with absorption coefficient above 0.8 under a deeply sub-wavelength thickness (22.2 mm). This study provides an effective way for the design of a space-limited broadband absorber. With the advantages of ultrathin thickness, broadband, and compactness, the developed fractal-based metasurface absorber has great potential in the field of noise reduction.
引用
收藏
页码:5571 / 5587
页数:17
相关论文
共 50 条
  • [1] A tunable function broadband absorber based on graphene fractal metasurface in the very long-wave infrared region
    Liang, Yue
    Zhang, Xueru
    Wang, Yuxiao
    Cai, Xiping
    DIAMOND AND RELATED MATERIALS, 2024, 149
  • [2] Metasurface based broadband solar absorber
    Katrodiya, Devang
    Jani, Charmy
    Sorathiya, Vishal
    Patel, Shobhit K.
    OPTICAL MATERIALS, 2019, 89 : 34 - 41
  • [3] Inverse design of a broadband tunable terahertz metasurface absorber
    Wang, Yuandong
    Wu, Guozhang
    Wang, Yibo
    Liu, Jianguo
    OPTICS COMMUNICATIONS, 2023, 540
  • [4] Moth wings as sound absorber metasurface
    Neil, Thomas R.
    Shen, Zhiyuan
    Robert, Daniel
    Drinkwater, Bruce W.
    Holderied, Marc W.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2262):
  • [5] Metasurface Broadband Solar Absorber
    Azad, Abul K.
    Kort-Kamp, Wilton J. M.
    Sykora, Milan
    Weisse-Bernstein, Nina R.
    Luk, Ting S.
    Taylor, Antoinette J.
    Dalvit, Diego A. R.
    Chen, Hou-Tong
    SCIENTIFIC REPORTS, 2016, 6
  • [6] Ultra-broadband long-wave infrared metasurface absorber based on Peano fractal curve
    Liang, Yue
    Liu, Xiaofei
    Xin, Jian
    Zhang, Xueru
    Wang, Yuxiao
    Song, Yinglin
    RESULTS IN PHYSICS, 2022, 33
  • [7] Broadband Near-Infrared Absorber Based on All Metallic Metasurface
    Zhang, Ke
    Deng, Ruixiang
    Song, Lixin
    Zhang, Tao
    MATERIALS, 2019, 12 (21)
  • [8] Broadband graphene-based metasurface solar absorber
    Charola, Shreyas
    Patel, Shobhit K.
    Parmar, Juveriya
    Ladumor, Mayurkumar
    Dhasarathan, Vigneswaran
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2020, 62 (03) : 1366 - 1373
  • [9] Metamaterial-Based Broadband Absorber Design
    Carmo, Camilla C. M.
    Batalha, Rose M. S.
    Ribeiro, Lucas D.
    Resende, Ursula C.
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (02)
  • [10] Broadband and angle-insensitive metasurface solar absorber
    Shreyas Charola
    Shobhit K. Patel
    Juveriya Parmar
    Rajendrasinh Jadeja
    Optical and Quantum Electronics, 2022, 54