Hyperbolic Anderson Model 2: Strichartz Estimates and Stratonovich Setting

被引:0
|
作者
Chen, Xia [1 ]
Deya, Aurelien [2 ]
Song, Jian [3 ]
Tindel, Samy [4 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Univ Lorraine, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, Lorraine, France
[3] Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Shandong, Peoples R China
[4] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
WAVE-EQUATION;
D O I
10.1093/imrn/rnad039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a wave equation in dimension $d\in \{1,2\}$ with a multiplicative space-time Gaussian noise. The existence and uniqueness of the Stratonovich solution is obtained under some conditions imposed on the Gaussian noise. The strategy is to develop some Strichartz-type estimates for the wave kernel in weighted Besov spaces, by which we can prove the well-posedness of an associated Young-type equation. Those Strichartz bounds are of independent interest.
引用
收藏
页码:18575 / 18628
页数:54
相关论文
共 50 条