Multi-level DEM study on silo discharge behaviors of non-spherical particles

被引:4
|
作者
Xu, Lei [1 ,2 ]
Wu, Xiukai [1 ]
Liang, Jingyin [1 ]
Wang, Shuai [3 ]
Bao, Shiyi [1 ,2 ]
机构
[1] Zhejiang Univ Technol, Inst Proc Equipment & Control Engn, Coll Mech Engn, Hangzhou 310032, Peoples R China
[2] Minist Educ, Engn Res Ctr Proc Equipment & Remfg, Hangzhou, Peoples R China
[3] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
来源
PARTICUOLOGY | 2023年 / 82卷
基金
中国国家自然科学基金;
关键词
Multi -level study; Non -spherical particle; Numerical simulation; Silo discharge; Granular flow; ELLIPSOIDAL PARTICLES; HOPPER DISCHARGE; FLOW-RATE; DISCRETE; SIMULATION; BOTTOM; SHAPE; TRANSITION; MODEL;
D O I
10.1016/j.partic.2023.02.001
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The silo discharge of non-spherical particles has been widely practiced in engineering processes, yet the understanding of multi-level mechanisms during solid transportation is still lacking. In this study, a high-fidelity super-ellipsoid Discrete Element Method (DEM) model is established to investigate the discharge behaviors of non-spherical particles with different size distributions. After the comprehensive model validations, we investigated the effects of particle shape (aspect ratio and particle sharpness) on the particle level discharge behaviors. The discharge rates of the ellipsoid particles used in the current work are larger than the spherical particles due to the larger solid fraction. The discharge rates of the cuboid-like particles are determined by the combined effect of the solid fraction and the contact force. Parcel level data show that the translational movements of the ellipsoid particles are more ordered, which is supported by the global level data. Strong correlations exist between the particle level and parcel level data, especially the ellipsoid particles and the large particles in the polydispersed cases.(c) 2023 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:179 / 191
页数:13
相关论文
共 50 条
  • [1] Mixing study of non-spherical particles using DEM
    Saeed, Muhammad Kashif
    Siraj, Muhammad Shafiq
    POWDER TECHNOLOGY, 2019, 344 : 617 - 627
  • [2] A strategy to determine DEM parameters for spherical and non-spherical particles
    Elskamp, Frederik
    Kruggel-Emden, Harald
    Hennig, Manuel
    Teipel, Ulrich
    GRANULAR MATTER, 2017, 19 (03)
  • [3] A strategy to determine DEM parameters for spherical and non-spherical particles
    Frederik Elskamp
    Harald Kruggel-Emden
    Manuel Hennig
    Ulrich Teipel
    Granular Matter, 2017, 19
  • [4] Multi-super-ellipsoid model for non-spherical particles in DEM simulation
    Liu, Zihan
    Zhao, Yongzhi
    POWDER TECHNOLOGY, 2020, 361 : 190 - 202
  • [5] NURBS-based DEM for non-spherical particles
    Liu, Shiwen
    Chen, Feiguo
    Ge, Wei
    Ricoux, Philippe
    PARTICUOLOGY, 2020, 49 : 65 - 76
  • [6] DEM investigation on conveying of non-spherical particles in a screw conveyor
    Sun, Hongyuan
    Ma, Huaqing
    Zhao, Yongzhi
    PARTICUOLOGY, 2022, 65 : 17 - 31
  • [7] A composite particle model for non-spherical particles in DEM simulations
    T. Zhao
    F. Dai
    N. W. Xu
    Y. Liu
    Y. Xu
    Granular Matter, 2015, 17 : 763 - 774
  • [8] A composite particle model for non-spherical particles in DEM simulations
    Zhao, T.
    Dai, F.
    Xu, N. W.
    Liu, Y.
    Xu, Y.
    GRANULAR MATTER, 2015, 17 (06) : 763 - 774
  • [9] The Effect of Particle Shape on the Compaction of Realistic Non-Spherical Particles-A Multi-Contact DEM Study
    Giannis, Kostas
    Kwade, Arno
    Finke, Jan Henrik
    Schilde, Carsten
    PHARMACEUTICS, 2023, 15 (03)
  • [10] Study of the hydraulic transport of non-spherical particles in a pipeline based on the CFD-DEM
    Chen, Qianyi
    Xiong, Ting
    Zhang, Xinzhuo
    Jiang, Pan
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2020, 14 (01) : 53 - 69