Random-field random surfaces

被引:4
|
作者
Dario, Paul [1 ]
Harel, Matan [2 ]
Peled, Ron [3 ]
机构
[1] Univ Claude Bernard Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Northeastern Univ, 360 Huntington Ave, Boston, MA 02115 USA
[3] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会; 以色列科学基金会;
关键词
82B24; 82B44; 82C41; KOSTERLITZ-THOULESS TRANSITION; GRADIENT GIBBS MEASURES; ENTROPIC REPULSION; HIERARCHICAL INTERFACES; PHASE-TRANSITION; ISING-MODEL; DELOCALIZATION; INEQUALITIES; STABILITY; SYSTEMS;
D O I
10.1007/s00440-022-01179-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study how the typical gradient and typical height of a random surface are modified by the addition of quenched disorder in the form of a random independent external field. The results provide quantitative estimates, sharp up to multiplicative constants, in the following cases. It is shown that for real-valued random-field random surfaces of the & nabla; phi type with a uniformly convex interaction potential: (i) The gradient of the surface delocalizes in dimensions 1 <= d <= 2 and localizes in dimensions d >= 3. (ii) The surface delocalizes in dimensions 1 <= d <= 4 and localizes in dimensions d >= 5. It is further shown that for the integer-valued random-field Gaussian free field: (i) The gradient of the surface delocalizes in dimensions d = 1, 2 and localizes in dimensions d >= 3. (ii) The surface delocalizes in dimensions d = 1, 2. (iii) The surface localizes in dimensions d >= 3 at low temperature and weak disorder strength. The behavior in dimensions d >= 3 at high temperature or strong disorder is left open. The proofs rely on several tools: Explicit identities satisfied by the expectation of the random surface, the Efron-Stein concentration inequality, a coupling argument for Langevin dynamics (originally due to Funaki and Spohn (Comm Math Phys 185(1): 1-36, 1997) and the Nash-Aronson estimate.
引用
收藏
页码:91 / 158
页数:68
相关论文
共 50 条
  • [1] CONVERGENCE TO THE THERMODYNAMIC LIMIT FOR RANDOM-FIELD RANDOM SURFACES
    Dario, Paul
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (02) : 1173 - 1195
  • [2] Random-field p-spin-glass model on regular random graphs
    Matsuda, Yoshiki
    Nishimori, Hidetoshi
    Zdeborova, Lenka
    Krzakala, Florent
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (18)
  • [3] Ensemble renormalization group for the random-field hierarchical model
    Decelle, Aurelien
    Parisi, Giorgio
    Rocchi, Jacopo
    PHYSICAL REVIEW E, 2014, 89 (03):
  • [4] Random-field Ising model in and out of equilibrium
    Liu, Y.
    Dahmen, K. A.
    EPL, 2009, 86 (05)
  • [5] The random-field Ising model with asymmetric bimodal probability distribution
    Hadjiagapiou, I. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (19) : 3945 - 3955
  • [6] Tuning a random-field mechanism in a frustrated magnet
    Kunwar, Shashikant Singh
    Sen, Arnab
    Vojta, Thomas
    Narayanan, Rajesh
    PHYSICAL REVIEW B, 2018, 98 (02)
  • [7] Universality in four-dimensional random-field magnets
    Fytas, Nikolaos G.
    Theodorakis, Panagiotis E.
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (08)
  • [8] Synchronization in the random-field Kuramoto model on complex networks
    Lopes, M. A.
    Lopes, E. M.
    Yoon, S.
    Mendes, J. F. F.
    Goltsev, A. V.
    PHYSICAL REVIEW E, 2016, 94 (01)
  • [9] Monte Carlo simulation of a random-field Ising antiferromagnet
    V. V. Prudnikov
    V. N. Borodikhin
    Journal of Experimental and Theoretical Physics, 2005, 101 : 294 - 298
  • [10] Domain Dynamics in Nonequilibrium Random-Field Ising Models
    Hrivnak, S.
    Zukovic, M.
    ACTA PHYSICA POLONICA A, 2014, 126 (01) : 38 - 39