Ultra-high performance liquid chromatography-quadrupole/time-of-flight mass spectrometry-based lipidomics reveals key lipid molecules as potential therapeutic targets of Polygonum cuspidatum against hyperlipidemia in a hamster model

被引:3
作者
Yang, Na [1 ,2 ]
Hu, Wei [1 ,2 ]
He, Jun [1 ]
Wu, Xu [3 ]
Zou, Ting [3 ]
Zheng, Jiahui [3 ]
Zhao, Chongbo [3 ,4 ]
Wang, Min [1 ,2 ,5 ]
机构
[1] Nanjing Univ Chinese Med, Nanjing Drum Tower Hosp, Clin Coll, Dept Pharm, Nanjing, Peoples R China
[2] Nanjing Univ, Nanjing Drum Tower Hosp, Affiliated Hosp, Dept Pharm,Med Sch, Nanjing, Peoples R China
[3] Shaanxi Univ Chinese Med, Coll Pharm, Xianyang, Peoples R China
[4] Shaanxi Univ Chinese Med, Coll Pharm, Xianyang 712046, Peoples R China
[5] Nanjing Univ Chinese Med, Nanjing Drum Tower Hosp, Clin Coll, Dept Pharm, Nanjing 210008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperlipidemia; lipidomics; liquid chromatography; mass spectrometry; Polygonum cuspidatum; METABOLIC SYNDROME; TRIGLYCERIDES;
D O I
10.1002/jssc.202200844
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Polygonum cuspidatum is a homology of traditional medicine and functional food widely distributed around the world. Our previous study on the hyperlipidemic animal model demonstrated that Polygonum cuspidatum was effective in ameliorating hyperlipidemia, which is characterized by lipid disorders. Herein, the regulatory effect of Polygonum cuspidatum on lipid metabolism needs to be known if its hypolipidemic mechanism is desired to clarify. In this study, an ultra-high performance liquid chromatography-quadrupole/time-of-flight mass spectrometry-based lipidomic strategy was first applied to investigate the lipidomic patterns of high-fat diet-induced hyperlipidemic hamsters when treated with Polygonum cuspidatum. The results showed that Polygonum cuspidatum improved the lipidomic profile of hyperlipidemia. A total of 65 differential lipids related to the hypolipidemic effect of Polygonum cuspidatum were screened out and identified, and these differential lipids covered various categories, such as phosphatidylcholines, phosphatidylethanolamines, triacylglycerols, sphingomyelins and so on. Orally administrated Polygonum cuspidatum restored these differential lipids back to normal or nearly normal levels. This study adopted lipidomics to reveal the key lipid molecules as potential therapeutic targets of Polygonum cuspidatum against hyperlipidemia, which would provide a scientific basis for its clinical application.
引用
收藏
页数:16
相关论文
共 51 条
[1]   Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease [J].
Cadby, Gemma ;
Giles, Corey ;
Melton, Phillip E. ;
Huynh, Kevin ;
Mellett, Natalie A. ;
Thy Duong ;
Anh Nguyen ;
Cinel, Michelle ;
Smith, Alex ;
Olshansky, Gavriel ;
Wang, Tingting ;
Brozynska, Marta ;
Inouye, Mike ;
McCarthy, Nina S. ;
Ariff, Amir ;
Hung, Joseph ;
Hui, Jennie ;
Beilby, John ;
Dube, Marie-Pierre ;
Watts, Gerald F. ;
Shah, Sonia ;
Wray, Naomi R. ;
Lim, Wei Ling Florence ;
Chatterjee, Pratishtha ;
Martins, Ian ;
Laws, Simon M. ;
Porter, Tenielle ;
Vacher, Michael ;
Bush, Ashley, I ;
Rowe, Christopher C. ;
Villemagne, Victor L. ;
Ames, David ;
Masters, Colin L. ;
Taddei, Kevin ;
Arnold, Matthias ;
Kastenmueller, Gabi ;
Nho, Kwangsik ;
Saykin, Andrew J. ;
Han, Xianlin ;
Kaddurah-Daouk, Rima ;
Martins, Ralph N. ;
Blangero, John ;
Meikle, Peter J. ;
Moses, Eric K. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[2]   NLA scientific statement on statin intolerance: a new definition and key considerations for ASCVD risk reduction in the statin intolerant patient [J].
Cheeley, Mary Katherine ;
Saseen, Joseph J. ;
Agarwala, Anandita ;
Ravilla, Sudha ;
Ciffone, Nicole ;
Jacobson, Terry A. ;
Dixon, Dave L. ;
Maki, Kevin C. .
JOURNAL OF CLINICAL LIPIDOLOGY, 2022, 16 (04) :361-375
[3]   Oxidative Stress and Lipid Dysregulation in Lipid Droplets: A Connection to Chronic Kidney Disease Revealed in Human Kidney Cells [J].
Chen, Zhen ;
Shrestha, Rojeet ;
Yang, Xiaoyue ;
Wu, Xunzhi ;
Jia, Jiaping ;
Chiba, Hitoshi ;
Hui, Shu-Ping .
ANTIOXIDANTS, 2022, 11 (07)
[4]   Lipidomics profiling of zebrafish liver through untargeted liquid chromatography-high resolution mass spectrometry [J].
da Silva, Katyeny Manuela ;
Iturrospe, Elias ;
van den Boom, Rik ;
van de Lavoir, Maria ;
Robeyns, Rani ;
Vergauwen, Lucia ;
Knapen, Dries ;
Cuykx, Matthias ;
Covaci, Adrian ;
van Nuijs, Alexander L. N. .
JOURNAL OF SEPARATION SCIENCE, 2022, 45 (15) :2935-2945
[5]   Circulating Ceramides and Sphingomyelins and Risk of Mortality: The Cardiovascular Health Study [J].
Fretts, Amanda M. ;
Jensen, Paul N. ;
Hoofnagle, Andrew N. ;
McKnight, Barbara ;
Sitlani, Colleen M. ;
Siscovick, David S. ;
King, Irena B. ;
Psaty, Bruce M. ;
Sotoodehnia, Nona ;
Lemaitre, Rozenn N. .
CLINICAL CHEMISTRY, 2021, 67 (12) :1650-1659
[6]   Lipid metabolism is dysregulated in a mouse model of diabetes [J].
Furse, Samuel .
METABOLOMICS, 2022, 18 (06)
[7]   Associations between TG/HDL ratio and insulin resistance in the US population: a cross-sectional study [J].
Gong, Rongpeng ;
Luo, Gang ;
Wang, Mingxiang ;
Ma, Lingbo ;
Sun, Shengnan ;
Wei, Xiaoxing .
ENDOCRINE CONNECTIONS, 2021, 10 (11) :1502-1512
[8]   Metabolomics activity screening for identifying metabolites that modulate phenotype [J].
Guijas, Carlos ;
Montenegro-Burke, J. Rafael ;
Warth, Benedikt ;
Spilker, Mary E. ;
Siuzdak, Gary .
NATURE BIOTECHNOLOGY, 2018, 36 (04) :316-320
[9]   High Fat-High Fructose Diet-Induced Changes in the Gut Microbiota Associated with Dyslipidemia in Syrian Hamsters [J].
Horne, Rachael G. ;
Yu, Yijing ;
Zhang, Rianna ;
Abdalqadir, Nyan ;
Rossi, Laura ;
Surette, Michael ;
Sherman, Philip M. ;
Adeli, Khosrow .
NUTRIENTS, 2020, 12 (11) :1-20
[10]   Distance correlation application to gene co-expression network analysis [J].
Hou, Jie ;
Ye, Xiufen ;
Feng, Weixing ;
Zhang, Qiaosheng ;
Han, Yatong ;
Liu, Yusong ;
Li, Yu ;
Wei, Yufen .
BMC BIOINFORMATICS, 2022, 23 (01)