Well-posedness and decay property for the Cauchy problem of the standard linear solid model with thermoelasticity of type III

被引:6
|
作者
Wang, Danhua [1 ,4 ]
Liu, Wenjun [1 ,2 ,3 ]
Chen, Kewang [1 ,2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Ctr Appl Math Jiangsu Prov, Nanjing 210044, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Jiangsu Int Joint Lab Syst Modeling & Data Anal, Nanjing 210044, Peoples R China
[4] Nanjing Xiaozhuang Univ, Coll Informat Engn, Nanjing 211171, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 02期
关键词
Well-posedness; The standard linear solid model; Thermoelasticity type III; Decay estimate; GIBSON-THOMPSON EQUATION; REGULARITY-LOSS TYPE; TIMOSHENKO SYSTEM; GENERAL DECAY; ASYMPTOTIC-BEHAVIOR; MEMORY; VIBRATIONS; RATES;
D O I
10.1007/s00033-023-01964-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Cauchy problem related to the standard linear solid model with thermoelasticity of type III in the whole space. By using semigroup theory, we first establish the well-posedness result under certain assumptions on the parameters. By applying the energy method in the Fourier space, we then prove the optimal decay estimate results for both the non-critical and critical cases. Specifically, the decay property of the system is not of the regularity-loss type. In addition, we study the asymptotic expansion of the eigenvalues to analyze the optimality of the decay results.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Well-posedness of a non-local abstract Cauchy problem with a singular integral
    Jiang, Haiyan
    Lu, Tiao
    Zhu, Xiangjiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (01) : 77 - 93
  • [42] Well-posedness of the Cauchy problem for the fourth-order nonlinear Schrodinger equation
    Chen, Mingjuan
    Liu, Nan
    Wang, Yaqing
    APPLIED MATHEMATICS LETTERS, 2025, 160
  • [43] On the p-fold Well-posedness of Higher Order Abstract Cauchy Problem
    Toumi, Habiba
    Nouar, Ahmed
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2024, 17 (03): : 304 - 317
  • [44] Well-Posedness of the Cauchy Problem for the Coupled System of the Schrodinger-KdV Equations
    Boling Guo
    Changxing Miao
    Acta Mathematica Sinica(English Series), 1999, 15 (02) : 215 - 224
  • [45] Well-posedness of a non-local abstract Cauchy problem with a singular integral
    Haiyan Jiang
    Tiao Lu
    Xiangjiang Zhu
    Frontiers of Mathematics in China, 2019, 14 : 77 - 93
  • [46] New decay rates for Cauchy problem of the Bresse system in thermoelasticty type III
    Afilal, Mounir
    Soufyane, Abdelaziz
    Radid, Atika
    APPLICABLE ANALYSIS, 2021, 100 (14) : 2911 - 2926
  • [47] Well-posedness of the Cauchy problem of a water wave equation with low regularity initial data
    Wang, Hua
    Cui, Shangbin
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 45 (9-10) : 1118 - 1132
  • [48] Well-posedness of the Cauchy problem of Ostrovsky equation in analytic Gevrey spaces and time regularity
    Aissa Boukarou
    Khaled Zennir
    Kaddour Guerbati
    Svetlin G. Georgiev
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 349 - 364
  • [49] Well-posedness of the Cauchy problem of Ostrovsky equation in analytic Gevrey spaces and time regularity
    Boukarou, Aissa
    Zennir, Khaled
    Guerbati, Kaddour
    Georgiev, Svetlin G.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 349 - 364