Well-posedness and decay property for the Cauchy problem of the standard linear solid model with thermoelasticity of type III

被引:6
|
作者
Wang, Danhua [1 ,4 ]
Liu, Wenjun [1 ,2 ,3 ]
Chen, Kewang [1 ,2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Ctr Appl Math Jiangsu Prov, Nanjing 210044, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Jiangsu Int Joint Lab Syst Modeling & Data Anal, Nanjing 210044, Peoples R China
[4] Nanjing Xiaozhuang Univ, Coll Informat Engn, Nanjing 211171, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 02期
关键词
Well-posedness; The standard linear solid model; Thermoelasticity type III; Decay estimate; GIBSON-THOMPSON EQUATION; REGULARITY-LOSS TYPE; TIMOSHENKO SYSTEM; GENERAL DECAY; ASYMPTOTIC-BEHAVIOR; MEMORY; VIBRATIONS; RATES;
D O I
10.1007/s00033-023-01964-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Cauchy problem related to the standard linear solid model with thermoelasticity of type III in the whole space. By using semigroup theory, we first establish the well-posedness result under certain assumptions on the parameters. By applying the energy method in the Fourier space, we then prove the optimal decay estimate results for both the non-critical and critical cases. Specifically, the decay property of the system is not of the regularity-loss type. In addition, we study the asymptotic expansion of the eigenvalues to analyze the optimality of the decay results.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A stability result for the vibrations given by the standard linear model with thermoelasticity of type III
    Apalara, Tijani A.
    Messaoudi, Salim A.
    Al-Smail, Jamal H.
    APPLICABLE ANALYSIS, 2018, 97 (10) : 1688 - 1700
  • [32] Well-posedness for the Cauchy Problem of the Modified Zakharov-Kuznetsov Equation
    Kinoshita, Shinya
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2022, 65 (02): : 139 - 158
  • [33] WELL-POSEDNESS AND ENERGY DECAY OF A TRANSMISSION PROBLEM OF KIRCHHOFF TYPE WAVE EQUATIONS WITH DAMPING AND DELAY TERMS
    Liu, Zhiqing
    Gao, Cunchen
    Fang, Zhong Bo
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, : 1 - 23
  • [34] On the well-posedness of the Cauchy problem for some nonlocal nonlinear Schrodinger equations
    Albert, John
    Kahlil, Estapraq
    NONLINEARITY, 2017, 30 (06) : 2308 - 2333
  • [35] Well-posedness of the Cauchy problem of Ostrovsky equation in anisotropic Sobolev spaces
    Wang, Hua
    Cui, Shangbin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) : 88 - 100
  • [36] Well-posedness and general decay of solution for a transmission problem with viscoelastic term and delay
    Wang, Danhua
    Li, Gang
    Zhu, Biqing
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 1202 - 1215
  • [37] Local well-posedness for the Cauchy problem of the MHD equations with mass diffusion
    Fan, Jishan
    Ni, Lidiao
    Zhou, Yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (07) : 792 - 797
  • [38] Decay rate of the solutions to the Cauchy problem of the Bresse system in thermoelasticity of type III with distributed delay
    Choucha, Abdelbaki
    Boulaaras, Salah
    Jan, Rashid
    Guefaifia, Rafik
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [39] Well-posedness of the Cauchy problem for the coupled system of the Schrodinger-KdV equations
    Guo, BL
    Miao, CX
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 1999, 15 (02): : 215 - 224
  • [40] H∞ well-posedness for a 2-evolution Cauchy problem with complex coefficients
    Cicognani, Massimo
    Herrmann, Torsten
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2013, 4 (01) : 63 - 90