Well-posedness and decay property for the Cauchy problem of the standard linear solid model with thermoelasticity of type III

被引:6
|
作者
Wang, Danhua [1 ,4 ]
Liu, Wenjun [1 ,2 ,3 ]
Chen, Kewang [1 ,2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Ctr Appl Math Jiangsu Prov, Nanjing 210044, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Jiangsu Int Joint Lab Syst Modeling & Data Anal, Nanjing 210044, Peoples R China
[4] Nanjing Xiaozhuang Univ, Coll Informat Engn, Nanjing 211171, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 02期
关键词
Well-posedness; The standard linear solid model; Thermoelasticity type III; Decay estimate; GIBSON-THOMPSON EQUATION; REGULARITY-LOSS TYPE; TIMOSHENKO SYSTEM; GENERAL DECAY; ASYMPTOTIC-BEHAVIOR; MEMORY; VIBRATIONS; RATES;
D O I
10.1007/s00033-023-01964-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Cauchy problem related to the standard linear solid model with thermoelasticity of type III in the whole space. By using semigroup theory, we first establish the well-posedness result under certain assumptions on the parameters. By applying the energy method in the Fourier space, we then prove the optimal decay estimate results for both the non-critical and critical cases. Specifically, the decay property of the system is not of the regularity-loss type. In addition, we study the asymptotic expansion of the eigenvalues to analyze the optimality of the decay results.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Well-posedness and decay property for the Cauchy problem of the standard linear solid model with thermoelasticity of type III
    Danhua Wang
    Wenjun Liu
    Kewang Chen
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [2] Well-posedness and decay property of regularity-loss type for the Cauchy problem of the standard linear solid model with Gurtin-Pipkin thermal law
    Wang, Danhua
    Liu, Wenjun
    ASYMPTOTIC ANALYSIS, 2021, 123 (1-2) : 181 - 201
  • [3] Well-posedness and asymptotic stability to a laminated beam in thermoelasticity of type III
    Liu, Wenjun
    Luan, Yue
    Liu, Yadong
    Li, Gang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3148 - 3166
  • [4] Well-posedness and stability results in a Timoshenko-type system of thermoelasticity of type III with delay
    Kafini, Muhammad
    Messaoudi, Salim A.
    Mustafa, Muhammad I.
    Apalara, Tijani
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1499 - 1517
  • [5] On the Cauchy problem of the standard linear solid model with Cattaneo heat conduction
    Pellicer, Marta
    Said-Houari, Belkacem
    ASYMPTOTIC ANALYSIS, 2022, 126 (1-2) : 95 - 127
  • [6] On the Cauchy problem of the standard linear solid model with Fourier heat conduction
    Pellicer, Marta
    Said-Houari, Belkacem
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [7] The Cauchy problem of the Bresse system in thermoelasticity of type III
    Said-Houari, Belkacem
    Hamadouche, Taklit
    APPLICABLE ANALYSIS, 2016, 95 (11) : 2323 - 2338
  • [8] Remarks on the well-posedness of the nonlinear Cauchy problem
    Métivier, G
    GEOMETRIC ANALYSIS OF PDE AND SEVERAL COMPLEX VARIABLES: DEDICATED TO FRANCOIS TREVES, 2005, 368 : 337 - 356
  • [9] On the Opial type criterion for the well-posedness of the Cauchy problem for linear systems of ordinary differential equations
    Ashordia, Malkhaz
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2016, 170 (02) : 149 - 165
  • [10] ON THE OPIAL TYPE CRITERION FOR THE WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR LINEAR SYSTEMS OF GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS
    Ashordia, Malkhaz
    MATHEMATICA BOHEMICA, 2016, 141 (02): : 183 - 215