Can radiomics replace the SPARCC scoring system in evaluating bone marrow edema of sacroiliac joints in patients with axial spondyloarthritis?

被引:6
作者
Zheng, Mo [1 ]
Miao, Shouliang [1 ]
Chen, Dan [2 ]
Yao, Fei [1 ]
Xiao, Qinqin [1 ]
Zhu, Guanxia [1 ]
Pan, Chenqiang [3 ]
Lei, Tao [3 ]
Ye, Chenhao [3 ]
Yang, Yunjun [4 ]
Ye, Lusi [2 ]
机构
[1] Wenzhou Med Univ, Affiliated Hosp 1, Dept Radiol, Wenzhou 325015, Zhejiang, Peoples R China
[2] Wenzhou Med Univ, Affiliated Hosp 1, Dept Rheumatol, Wenzhou 325015, Zhejiang, Peoples R China
[3] Wenzhou Med Univ, Wenzhou 325035, Zhejiang, Peoples R China
[4] Wenzhou Med Univ, Affiliated Hosp 1, Dept Nucl Med, Wenzhou 325015, Zhejiang, Peoples R China
关键词
Axial spondyloarthritis; Magnetic resonance imaging; Radiomics; SPARCC scoring system; SOCIETY CLASSIFICATION CRITERIA; RESEARCH CONSORTIUM; MRI; INFLAMMATION; VALIDATION; LESIONS; BERLIN; INDEX;
D O I
10.1007/s10067-023-06543-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objectives To develop an objective and efficient method based on radiomics to evaluate bone marrow edema (BMO) of sacroiliac joints (SIJs) by magnetic resonance imaging (MRI) in patients with axial spondyloarthritis (axSpA) and to compare with the Spondyloarthritis Research Consortium of Canada (SPARCC) scoring system. Methods From September 2013 to March 2022, patients with axSpA who underwent 3.0T SIJ-MRI were included and were randomly divided into training and validation cohorts at a ratio of 7:3. The optimal radiomics features selected from the SIJ-MRI in the training cohort were included to generate the radiomics model. The performance of the model was evaluated by ROC analysis and decision curve analysis (DCA). Rad scores were calculated using the radiomics model. The responsiveness was compared for Rad scores and SPARCC scores. We also assessed the correlation between the Rad score and SPARCC score. Results A total of 558 patients were finally included. The radiomics model showed favorable discrimination of a SPARCC score < 2 or >= 2 both in the training (AUC, 0.90; 95% CI: 0.87-0.93) and validation cohorts (AUC, 0.90; 95% CI, 0.86-0.95). DCA confirmed that the model was clinically useful. Rad score showed higher responsiveness to treatment-related change than SPARCC score. Furthermore, a significant correlation was noted between the Rad score and SPARCC score when scoring the status of BMO (r(s)=0.80, P < 0.001), and a strong correlation was noted when scoring the change in BMO (r=0.70, P < 0.001). Conclusion The study proposed a radiomics model to accurately quantify the BMO of SIJs in patients with axSpA, providing an alternative to the SPARCC scoring system.
引用
收藏
页码:1675 / 1682
页数:8
相关论文
共 34 条
[1]   What Level of Inflammation Leads to Structural Damage in the Sacroiliac Joints? A Four-Year Magnetic Resonance Imaging Follow-up Study of Low Back Pain Patients [J].
Arnbak, Bodil ;
Jensen, Tue S. ;
Schiottz-Christensen, Berit ;
Pedersen, Susanne J. ;
Ostergaard, Mikkel ;
Weber, Ulrich ;
Hendricks, Oliver ;
Zejden, Anna ;
Manniche, Claus ;
Jurik, Anne G. .
ARTHRITIS & RHEUMATOLOGY, 2019, 71 (12) :2027-2033
[2]   MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer [J].
Bitencourt, Almir G., V ;
Gibbs, Peter ;
Saccarelli, Carolina Rossi ;
Daimiel, Isaac ;
Lo Gullo, Roberto ;
Fox, Michael J. ;
Thakur, Sunitha ;
Pinker, Katja ;
Morris, Elizabeth A. ;
Morrow, Monica ;
Jochelson, Maxine S. .
EBIOMEDICINE, 2020, 61
[3]   Quantifying bone marrow inflammatory edema in the spine and sacroiliac joints with thresholding [J].
Chronaiou, Ioanna ;
Thomsen, Ruth S. ;
Huuse, Else M. ;
Euceda, Leslie R. ;
Pedersen, Susanne J. ;
Hoff, Mari ;
Sitter, Beathe .
BMC MUSCULOSKELETAL DISORDERS, 2017, 18
[4]   Machine learning techniques for computer-aided classification of active inflammatory sacroiliitis in magnetic resonance imaging [J].
Faleiros, Matheus Calil ;
Nogueira-Barbosa, Marcello Henrique ;
Dalto, Vitor Faeda ;
Ferreira Junior, Jose Raniery ;
Magalhaes Tenorio, Ariane Priscilla ;
Luppino-Assad, Rodrigo ;
Louzada-Junior, Paulo ;
Rangayyan, Rangaraj Mandayam ;
de Azevedo-Marques, Paulo Mazzoncini .
ADVANCES IN RHEUMATOLOGY, 2020, 60 (01)
[5]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[6]   Development and Validation of MRI Sacroiliac Joint Scoring Methods for the Semiaxial Scan Plane Corresponding to the Berlin and SPARCC MRI Scoring Methods, and of a New Global MRI Sacroiliac Joint Method [J].
Hededal, Pernilie ;
Ostergaard, Mikkel ;
Sorensen, Inge Juul ;
Loft, Anne Gitte ;
Hindrup, Jens S. ;
Thamsborg, Gorm ;
Asmussen, Karsten ;
Hendricks, Oliver ;
Norregaard, Jesper ;
Moller, Jakob M. ;
Jurik, Anne Grethe ;
Morsel, Lone ;
Balding, Lone ;
Pedersen, Susanne Juhl .
JOURNAL OF RHEUMATOLOGY, 2018, 45 (01) :70-77
[7]   Sacroiliitis in patients with ankylosing spondylitis: association of MR findings with disease activity [J].
Jee, WH ;
McCauley, TR ;
Lee, SH ;
Kim, SH ;
Im, SA ;
Ha, KY .
MAGNETIC RESONANCE IMAGING, 2004, 22 (02) :245-250
[8]   Differentiation of inflammatory from degenerative changes in the sacroiliac joints by machine learning supported texture analysis [J].
Kepp, Felix H. ;
Huber, Florian A. ;
Wurnig, Moritz C. ;
Mannil, Manoj ;
Kaniewska, Malwina ;
Guglielmi, Riccardo ;
Del Grande, Filippo ;
Guggenberger, Roman .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 140
[9]   The semi-automated algorithm for the detection of bone marrow oedema lesions in patients with axial spondyloarthritis [J].
Kucybala, Iwona ;
Tabor, Zbislaw ;
Polak, Jakub ;
Urbanik, Andrzej ;
Wojciechowski, Wadim .
RHEUMATOLOGY INTERNATIONAL, 2020, 40 (04) :625-633
[10]   Defining active sacroiliitis on MRI for classification of axial spondyloarthritis: update by the ASAS MRI working group [J].
Lambert, Robert G. W. ;
Bakker, Pauline A. C. ;
van der Heijde, Desiree ;
Weber, Ulrich ;
Rudwaleit, Martin ;
Hermann, Kay-Geert A. ;
Sieper, Joachim ;
Baraliakos, Xenofon ;
Bennett, Alex ;
Braun, Jurgen ;
Burgos-Vargas, Ruben ;
Dougados, Maxime ;
Pedersen, Susanne Juhl ;
Jurik, Anne Grethe ;
Maksymowych, Walter P. ;
Marzo-Ortega, Helena ;
Ostergaard, Mikkel ;
Poddubnyy, Denis ;
Reijnierse, Monique ;
van den Bosch, Filip ;
van der Horst-Bruinsma, Irene ;
Landewe, Robert .
ANNALS OF THE RHEUMATIC DISEASES, 2016, 75 (11) :1958-1963