A Family of Transformed Difference Schemes for Nonlinear Time-Fractional Equations

被引:3
作者
Qin, Hongyu [1 ]
Chen, Xiaoli [2 ,3 ]
Zhou, Boya [4 ]
机构
[1] Wuhan Inst Technol, Sch Math & Phys, Wuhan 430205, Peoples R China
[2] Natl Univ Singapore, Inst Funct Intelligent Mat, Singapore 117544, Singapore
[3] Natl Univ Singapore, Dept Math, Singapore 119077, Singapore
[4] Foshan Univ, Sch Math & Big Data, Foshan 528000, Peoples R China
基金
中国国家自然科学基金;
关键词
time-fractional parabolic problems; change in variable; convergence; optimal error estimates; linearized schemes; CONVOLUTION QUADRATURE; NUMERICAL-METHODS;
D O I
10.3390/fractalfract7010096
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a class of finite difference methods for numerically solving fractional differential equations. Such numerical schemes are developed based on the change in variable and piecewise interpolations. Error analysis of the numerical schemes is obtained by using a Gronwall-type inequality. Numerical examples are given to confirm the theoretical results.
引用
收藏
页数:11
相关论文
共 39 条
  • [1] A new difference scheme for the time fractional diffusion equation
    Alikhanov, Anatoly A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 : 424 - 438
  • [2] Second order difference schemes for time-fractional KdV-Burgers' equation with initial singularity
    Cen, Dakang
    Wang, Zhibo
    Mo, Yan
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 112
  • [3] Linearized compact ADI schemes for nonlinear time-fractional Schrodinger equations
    Chen, Xiaoli
    Di, Yana
    Duan, Jinqiao
    Li, Dongfang
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 84 : 160 - 167
  • [4] Convolution quadrature time discretization of fractional diffusion-wave equations
    Cuesta, E
    Lubich, C
    Palencia, C
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (254) : 673 - 696
  • [5] Analysis of fractional differential equations
    Diethelm, K
    Ford, NJ
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) : 229 - 248
  • [6] WEAKLY SINGULAR DISCRETE GRONWALL-INEQUALITIES
    DIXON, J
    MCKEE, S
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (11): : 535 - 544
  • [7] Fallahgoul HA, 2017, FRACTIONAL CALCULUS AND FRACTIONAL PROCESSES WITH APPLICATIONS TO FINANCIAL ECONOMICS: THEORY AND APPLICATION, P1
  • [8] A FAST ALGORITHM FOR THE EVALUATION OF HEAT POTENTIALS
    GREENGARD, L
    STRAIN, J
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) : 949 - 963
  • [9] Hilfer R., 2000, APPL FRACTIONAL CALC
  • [10] A High-Order Compact Finite Difference Scheme for the Fractional Sub-diffusion Equation
    Ji, Cui-cui
    Sun, Zhi-zhong
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2015, 64 (03) : 959 - 985