Symmetric polynomials in the variety generated by Grassmann algebras

被引:3
作者
Akdogan, Nazan [1 ]
Findik, Sehmus [2 ]
机构
[1] Istanbul Tech Univ, Dept Math, Istanbul, Turkiye
[2] Cukurova Univ, Dept Math, TR-01330 Adana, Turkiye
关键词
Grassmann algebras; symmetric polynomials; FINITE-GROUPS; IDENTITIES; INVARIANTS;
D O I
10.1142/S0219498823500196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G denote the variety generated by infinite-dimensional Grassmann algebras, i.e. the collection of all unitary associative algebras satisfying the identity [[z1, z2], z3] = 0, where [zi, zj] = zizj - zjzi. Consider the free algebra F3 in G generated by X3 = {x1, x2, x3}. We call a polynomial p. F3 symmetric if it is preserved under the action of the symmetric group S3 on generators, i.e. p(x1, x2, x3) = p(x.1, x.2, x.3) for each permutation.. S3. The set of symmetric polynomials forms the subalgebra F S3 3 of invariants of the group S3 in F3. The commutator ideal F x 3 of the algebra F3 has a natural left K[X3]-module structure, and (F x 3)S3 is a left K[X3]S3 -module. We give a finite free generating set for the K[X3]S3 -module (F x 3)S3
引用
收藏
页数:11
相关论文
共 24 条
[1]  
Akdogan N., 2021, ERZINCAN J SCI TECH, V14, P874
[2]  
[Anonymous], 1901, Archiv der Mathematik und Physik
[3]   On the fixed points of a finite group acting on a relatively free Lie algebra [J].
Bryant, RM ;
Papistas, AI .
GLASGOW MATHEMATICAL JOURNAL, 2000, 42 :167-181
[4]  
Centrone L., 2016, J ALGEBRA COMB DISCR, V4, P165
[5]   INVARIANTS OF FINITE GROUPS GENERATED BY REFLECTIONS [J].
CHEVALLEY, C .
AMERICAN JOURNAL OF MATHEMATICS, 1955, 77 (04) :778-782
[6]  
Dicks W., 1982, LINEAR MULTILINEAR A, V12, P21, DOI DOI 10.1080/03081088208817467.MR672913
[8]  
Drensky V., 2000, Free Algebras and PI-Algebras: Graduate Course in Algebra
[9]   Symmetric Polynomials in the Free Metabelian Lie Algebras [J].
Drensky, Vesselin ;
Findik, Sehmus ;
Oguslu, Nazar Sahin .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (05)
[10]   Symmetric polynomials in Leibniz algebras and their inner automorphisms [J].
Findik, Sehmus ;
Ozkurt, Zeynep .
TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (06) :2306-2311