pH-Responsive nanofiber buttresses as local drug delivery devices

被引:15
|
作者
Altinbasak, Ismail [1 ]
Kocak, Salli [1 ]
Colby, Aaron H. [3 ]
Alp, Yasin [1 ]
Sanyal, Rana [1 ,2 ]
Grinstaff, Mark W. [3 ,4 ]
Sanyal, Amitav [1 ,2 ]
机构
[1] Bogazici Univ, Dept Chem, TR-34342 Istanbul, Turkey
[2] Bogazici Univ, Ctr Life Sci & Technol, TR-34342 Istanbul, Turkey
[3] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[4] Boston Univ, Dept Chem, Boston, MA 02215 USA
关键词
EXPANSILE NANOPARTICLES; RELEASE; CANCER; RECURRENCE; POLYMERS; EFFICACY; DESIGN; MODEL; ASSEMBLIES; PREVENTION;
D O I
10.1039/d2bm01199a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Electrospun nanofibers are a 3D scaffold of choice for many drug delivery devices due to their high surface area, significant capacity for drug payload, ease of in situ placement, and scalable manufacture. Herein, we report the synthesis of polymeric, pH-responsive nanofiber buttresses via electrospinning. The homopolymer is comprised of an acrylic backbone with acid-sensitive, hydrolyzable, trimethoxybenzaldehyde-protected side chains that lead to buttress transformation from a hydrophobic to a hydrophilic state under physiologically relevant pH conditions (e.g., extracellular tumor environment with pH = 6.5). Hydrolysis of the side chains leads to an increase in fiber diameter from approximately 350 to 900 nm and the release of the encapsulated drug cargo. In vitro drug release profiles demonstrate that significantly more drug is released at pH 5.5 compared to pH 7.4, thereby limiting the release to the target site, with docetaxel releasing over 20 days and doxorubicin over 7 days. Drug burst release, defined as >50% within 24 hours, does not occur at either pH or with either drug. Drug-loaded buttresses preserve drug activity and are cytotoxic to multiple human cancer lines, including breast and lung. Important to their potential application in surgical applications, the tensile strength of the buttresses is 6.3 kPa and, though weaker than commercially available buttresses, they provide sufficient flexibility and mechanical integrity to serve as buttressing materials via the application with a conventional surgical cutting stapler.
引用
收藏
页码:813 / 821
页数:10
相关论文
共 50 条
  • [31] pH-Responsive Polymer Core-Shell Nanospheres for Drug Delivery
    Wang, Hui
    Rempel, Garry L.
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2013, 51 (20) : 4440 - 4450
  • [32] Novel pH-responsive multilayer magnetic nanoparticles for controlled drug delivery
    Seyed Farshad Motevalizadeh
    Mehdi Khoobi
    Niloofar Babanejad
    Elham Mohit
    Pouya Dehghankelishadi
    Hamid Akbari Javar
    Farid A. Dorkoosh
    Mohammad Ali Faramarzi
    Abbas Shafiee
    Journal of the Iranian Chemical Society, 2016, 13 : 1653 - 1666
  • [33] Nanoparticle-Stabilized Liposomes for pH-Responsive Gastric Drug Delivery
    Thamphiwatana, Soracha
    Fu, Victoria
    Zhu, Jingying
    Lu, Diannan
    Gao, Weiwei
    Zhang, Liangfang
    LANGMUIR, 2013, 29 (39) : 12228 - 12233
  • [34] A pH-Responsive Dual-drug Delivery System Based on Chitosan
    Han, Xue
    Cao, Jiang-yong-quan
    Zhou, Jiang-ling
    Chen, Cheng
    Song, Fei
    Wang, Yu-zhong
    ACTA POLYMERICA SINICA, 2015, (12) : 1471 - 1476
  • [35] A fast pH-responsive IPN hydrogel: Synthesis and controlled drug delivery
    Wu, Wen
    Wang, Dong-sheng
    REACTIVE & FUNCTIONAL POLYMERS, 2010, 70 (09): : 684 - 691
  • [36] Advancements in pH-responsive nanocarriers: enhancing drug delivery for tumor therapy
    Chen, Zhouyun
    Wang, Xiaoxiao
    Zhao, Na
    Chen, Haifeng
    Guo, Gang
    EXPERT OPINION ON DRUG DELIVERY, 2023, : 1623 - 1642
  • [37] Zinc Zeolite as a Carrier for Tumor Targeted and pH-responsive Drug Delivery
    Sandomierski, Mariusz
    Jakubowski, Marcel
    Ratajczak, Maria
    Pokora, Monika
    Voelkel, Adam
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2023, 33 (06) : 1667 - 1674
  • [38] PEGylated hollow pH-responsive polymeric nanocapsules for controlled drug delivery
    Massoumi, Bakhshali
    Abbasian, Mojtaba
    Jahanban-Esfahlan, Rana
    Motamedi, Sanaz
    Samadian, Hadi
    Rezaei, Aram
    Derakhshankhah, Hossein
    Farnudiyan-Habibi, Amir
    Jaymand, Mehdi
    POLYMER INTERNATIONAL, 2020, 69 (05) : 519 - 527
  • [39] pH-responsive polymeric nanoparticles with tunable sizes for targeted drug delivery
    Kong, Mengle
    Peng, Xinwen
    Cui, Hao
    Liu, Peiwen
    Pang, Bo
    Zhang, Kai
    RSC ADVANCES, 2020, 10 (09) : 4860 - 4868
  • [40] Biodegradable and Inherently Fluorescent pH-Responsive Nanoparticles for Cancer Drug Delivery
    Kalindu Perera
    Dat X. Nguyen
    Dingbowen Wang
    Aneetta E. Kuriakose
    Jian Yang
    Kytai T. Nguyen
    Jyothi U. Menon
    Pharmaceutical Research, 2022, 39 : 2729 - 2743