pH-Responsive nanofiber buttresses as local drug delivery devices

被引:15
|
作者
Altinbasak, Ismail [1 ]
Kocak, Salli [1 ]
Colby, Aaron H. [3 ]
Alp, Yasin [1 ]
Sanyal, Rana [1 ,2 ]
Grinstaff, Mark W. [3 ,4 ]
Sanyal, Amitav [1 ,2 ]
机构
[1] Bogazici Univ, Dept Chem, TR-34342 Istanbul, Turkey
[2] Bogazici Univ, Ctr Life Sci & Technol, TR-34342 Istanbul, Turkey
[3] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[4] Boston Univ, Dept Chem, Boston, MA 02215 USA
关键词
EXPANSILE NANOPARTICLES; RELEASE; CANCER; RECURRENCE; POLYMERS; EFFICACY; DESIGN; MODEL; ASSEMBLIES; PREVENTION;
D O I
10.1039/d2bm01199a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Electrospun nanofibers are a 3D scaffold of choice for many drug delivery devices due to their high surface area, significant capacity for drug payload, ease of in situ placement, and scalable manufacture. Herein, we report the synthesis of polymeric, pH-responsive nanofiber buttresses via electrospinning. The homopolymer is comprised of an acrylic backbone with acid-sensitive, hydrolyzable, trimethoxybenzaldehyde-protected side chains that lead to buttress transformation from a hydrophobic to a hydrophilic state under physiologically relevant pH conditions (e.g., extracellular tumor environment with pH = 6.5). Hydrolysis of the side chains leads to an increase in fiber diameter from approximately 350 to 900 nm and the release of the encapsulated drug cargo. In vitro drug release profiles demonstrate that significantly more drug is released at pH 5.5 compared to pH 7.4, thereby limiting the release to the target site, with docetaxel releasing over 20 days and doxorubicin over 7 days. Drug burst release, defined as >50% within 24 hours, does not occur at either pH or with either drug. Drug-loaded buttresses preserve drug activity and are cytotoxic to multiple human cancer lines, including breast and lung. Important to their potential application in surgical applications, the tensile strength of the buttresses is 6.3 kPa and, though weaker than commercially available buttresses, they provide sufficient flexibility and mechanical integrity to serve as buttressing materials via the application with a conventional surgical cutting stapler.
引用
收藏
页码:813 / 821
页数:10
相关论文
共 50 条
  • [1] Injectable and pH-Responsive Silk Nanofiber Hydrogels for Sustained Anticancer Drug Delivery
    Wu, Hongchun
    Liu, Shanshan
    Xiao, Liying
    Dong, Xiaodan
    Lu, Qiang
    Kaplan, David L.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (27) : 17118 - 17126
  • [2] pH-Responsive Nanoparticles for Drug Delivery
    Gao, Weiwei
    Chan, Juliana M.
    Farokhzad, Omid C.
    MOLECULAR PHARMACEUTICS, 2010, 7 (06) : 1913 - 1920
  • [3] pH-Responsive Polymer Nanoparticles for Drug Delivery
    Deirram, Nayeleh
    Zhang, Changhe
    Kermaniyan, Sarah S.
    Johnston, Angus P. R.
    Such, Georgina K.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (10)
  • [4] pH-Responsive Drug-Delivery Systems
    Zhu, Ying-Jie
    Chen, Feng
    CHEMISTRY-AN ASIAN JOURNAL, 2015, 10 (02) : 284 - 305
  • [5] pH-responsive polymers for drug delivery: Trends and opportunities
    Singh, Jagtar
    Nayak, Pallavi
    JOURNAL OF POLYMER SCIENCE, 2023, 61 (22) : 2828 - 2850
  • [6] Thermo- and pH-responsive polymers in drug delivery
    Schmaljohann, Dirk
    ADVANCED DRUG DELIVERY REVIEWS, 2006, 58 (15) : 1655 - 1670
  • [7] A monolithic polymeric microdevice for pH-responsive drug delivery
    Jian Chen
    Michael Chu
    Khajag Koulajian
    Xiao Yu Wu
    Adria Giacca
    Yu Sun
    Biomedical Microdevices, 2009, 11 : 1251 - 1257
  • [8] A monolithic polymeric microdevice for pH-responsive drug delivery
    Chen, Jian
    Chu, Michael
    Koulajian, Khajag
    Wu, Xiao Yu
    Giacca, Adria
    Sun, Yu
    BIOMEDICAL MICRODEVICES, 2009, 11 (06) : 1251 - 1257
  • [9] pH-responsive polymeric vesicles as drug delivery systems
    Dubos, Ashley
    Fish, Daryle
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [10] Preparation and application of pH-responsive drug delivery systems
    Ding, Haitao
    Tan, Ping
    Fu, Shiqin
    Tian, Xiaohe
    Zhang, Hu
    Ma, Xuelei
    Gu, Zhongwei
    Luo, Kui
    JOURNAL OF CONTROLLED RELEASE, 2022, 348 : 206 - 238