Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity

被引:3
|
作者
Fang, Yuzhou [1 ]
Zhang, Chao [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
TUG-OF-WAR; VISCOSITY SOLUTIONS; P-LAPLACIAN; EQUIVALENCE; MINIMIZERS; EXISTENCE;
D O I
10.1007/s00526-022-02360-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of quasi-linear parabolic equations involving nonhomogeneous degeneracy or/and singularity partial derivative(t)u = [vertical bar Du vertical bar(q) + a(x, t) vertical bar Du vertical bar(s)](Delta u + (p - 2)< D(2)u Du/vertical bar Du vertical bar, Du/vertical bar Du vertical bar >), where 1<p<infinity, -1<q <= s<infinity and a(x,t)>= 0. The motivation to investigate this model stems not only from the connections to tug-of-war like stochastic games with noise, but also from the non-standard growth problems of double phase type. According to different values of q, s, such equations include nonhomogeneous degeneracy or singularity, and may involve these two features simultaneously. In particular, when q=p-2 and q<s, it will encompass the parabolic p-Laplacian both in divergence form and in non-divergence form. We aim to explore the L-infinity to C-1,C-alpha regularity theory for the aforementioned problem. To be precise, under some proper assumptions, we use geometrical methods to establish the local Holder regularity of spatial gradients of viscosity solutions.
引用
收藏
页数:46
相关论文
共 50 条
  • [41] Pointwise regularity for a parabolic equation with log-term singularity
    de Holanda, Angelo R. F.
    de Queiroz, Olivaine S.
    dos Santos, Cesar K. S.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (03) : 983 - 1000
  • [42] SINGULARITY FORMATION TO THE NONHOMOGENEOUS MAGNETO-MICROPOLAR FLUID EQUATIONS
    Zhong, Xin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (12): : 6339 - 6357
  • [43] On existence and multiplicity of solutions of Neumann boundary value problems for quasi-linear elliptic equations
    Wu, Xian
    Tan, Kok-Keong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (07) : 1334 - 1347
  • [44] Multiplicity results for quasi-linear problems
    Ayoujil, A.
    El Amrouss, A. R.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (07) : 1802 - 1815
  • [45] EXISTENCE, UNIQUENESS AND STABILITY OF TRAVELING WAVE FRONTS OF DISCRETE QUASI-LINEAR EQUATIONS WITH DELAY
    Lv, Guangying
    Wang, Mingxin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 13 (02): : 415 - 433
  • [46] Multiple positive solutions of quasi-linear boundary value problems for finite difference equations
    Pang, Huihui
    Feng, Hanying
    Ge, Weigao
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (01) : 451 - 456
  • [47] Regularity for parabolic equations with time dependent growth
    Ok, Jihoon
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 120 : 253 - 293
  • [48] Multiple solutions for a class of fractional quasi-linear equations with critical exponential growth in RN
    Li, Qin
    Yang, Zuodong
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (07) : 969 - 983
  • [49] Multiple solutions for quasi-linear elliptic equations with Berestycki-Lions type nonlinearity
    Wu, Maomao
    Liu, Haidong
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (02): : 334 - 344
  • [50] A theorem of Rado's type for the solutions of a quasi-linear equation
    Juutinen, P
    Lindqvist, P
    MATHEMATICAL RESEARCH LETTERS, 2004, 11 (01) : 31 - 34