Sliding-mode boundary control for perturbed time fractional parabolic systems with spatially varying coefficients using backstepping

被引:7
作者
Chen, Juan [1 ]
Zhuang, Bo [2 ]
机构
[1] Changzhou Univ, Aliyun Sch Big Data, Changzhou, Peoples R China
[2] Binzhou Univ, Sch Informat Engn, Binzhou 256600, Peoples R China
基金
中国国家自然科学基金;
关键词
backstepping; boundary control; fractional-order sliding mode; spatially varying coefficients; time fractional parabolic PDEs; DIFFUSION EQUATION; STABILIZATION;
D O I
10.1002/asjc.2982
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the boundary stabilization of an uncertain time fractional parabolic systems governed by time fractional parabolic partial differential equations (PDEs) with a boundary input disturbance and spatially varying coefficients (nonconstant coefficients) using a fractional-order sliding-mode controller. For this, the backstepping approach is used to transform an original system into a target system with a new manipulable input and perturbation. Then, the fractional-order sliding-mode algorithm is employed to design this new discontinuous boundary input to achieve the asymptotical stabilization of the target system (and, therefore, of the original system as well) by the fractional Lyapunov method. Apart from this, the well-posedness of the fractional parabolic system is analyzed theoretically. Fractional-order numerical simulations are provided to validate the developed technique.
引用
收藏
页码:2918 / 2933
页数:16
相关论文
共 43 条
[11]   Backstepping-based boundary control design for a fractional reaction diffusion system with a space-dependent diffusion coefficient [J].
Chen, Juan ;
Cui, Baotong ;
Chen, YangQuan .
ISA TRANSACTIONS, 2018, 80 :203-211
[12]   Backstepping-based boundary feedback control for a fractional reaction diffusion system with mixed or Robin boundary conditions [J].
Chen, Juan ;
Zhuang, Bo ;
Chen, YangQuan ;
Cui, Baotong .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (17) :2964-2976
[13]   Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity [J].
Cherstvy, Andrey G. ;
Chechkin, Aleksei V. ;
Metzler, Ralf .
SOFT MATTER, 2014, 10 (10) :1591-1601
[14]  
Curtain R. F., 2012, Introduction to Infinite-Dimensional Systems Theory: A State-Space Approach, V21, DOI [10.1007/978-1-4612-4224-6, DOI 10.1007/978-1-4612-4224-6]
[15]   Control of a fractional-order economical system via sliding mode [J].
Dadras, Sara ;
Momeni, Hamid Reza .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (12) :2434-2442
[16]  
Friedman A., 1964, Partial Differential Equations of Parabolic Type
[17]   Mittag-Leffler convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters [J].
Ge, Fudong ;
Meurer, Thomas ;
Chen, YangQuan .
SYSTEMS & CONTROL LETTERS, 2018, 122 :86-92
[18]   Event-triggered boundary feedback control for networked reaction-subdiffusion processes with input uncertainties [J].
Ge, Fudong ;
Chen, YangQuan .
INFORMATION SCIENCES, 2019, 476 :239-255
[19]   Boundary feedback stabilisation for the time fractional-order anomalous diffusion system [J].
Ge, Fudong ;
Chen, YangQuan ;
Kou, Chunhai .
IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (11) :1250-1257
[20]   Stabilization of uncertain fractional order system with time-varying delay using BMI approach [J].
He, Bin-Bin ;
Zhou, Hua-Cheng ;
Kou, Chun-Hai ;
Chen, YangQuan .
ASIAN JOURNAL OF CONTROL, 2021, 23 (01) :582-590