Design of discrete PID controllers for maximizing stability margins

被引:5
作者
Guo, Tong-Yi [1 ]
Hwang, Chyi [2 ]
Lu, Li-Shin [3 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Dept Chem & Mat Engn, Kaohsiung, Taiwan
[2] Natl Quemoy Univ, Gen Educ Ctr, Kinmen 89250, Taiwan
[3] Natl Quemoy Univ, Dept Ind Engn & Management, Kinmen, Taiwan
关键词
digital PID; discrete-time systems; D-partition theory; maximum stability margin; stabilizing controller set; PARAMETER SPACE; SYSTEMS; COMPUTATION; STABILIZATION; REGIONS; DELAY; GAIN;
D O I
10.1002/asjc.2940
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The objective of this paper is to provide a discrete PID controller design procedure for maximizing stability margins. First, a new and complete characterization of the entire set of stabilizing discrete PID controllers for a given plant is presented. Then, based on this characterization, an efficient algorithm is developed for testing if, for a given plant, there exists a digital PID controller gain parameter space corresponding to closed-loop poles being inside the circle of radius rho centered at the origin. The developed algorithm is finally applied along with a bisection strategy to determine, for a specified small positive number epsilon, a minimum value rho(*)(epsilon) and the corresponding rho(*)(epsilon)- stabilizing discrete PID controller set for achieving at least 1-rho(*)(epsilon) of stability margin. To illustrate the features of our new characterization of stabilizing digital PID controller sets and the effectiveness of the presented algorithms to the maximum stability-margin discrete PID controller design, two numerical examples are provided.
引用
收藏
页码:824 / 839
页数:16
相关论文
共 58 条
[1]  
Ackermann J., 2002, IFAC Proc., V35, P127
[2]   Stable polyhedra in parameter space [J].
Ackermann, R ;
Kaesbauer, D .
AUTOMATICA, 2003, 39 (05) :937-943
[3]   kP-stable regions in the space of PID controller coefficients [J].
Almodaresi, Elham ;
Bozorg, Mohammad .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (10) :1642-1647
[4]   Stability domains of the delay and PID coefficients for general time-delay systems [J].
Almodaresi, Elham ;
Bozorg, Mohammad ;
Taghirad, Hamid D. .
INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (04) :783-792
[5]  
[Anonymous], 2020, MATH VERS 12 0
[6]  
[Anonymous], 2021, WOLFRAM MATHWORLD
[7]  
Astrom Karl Johan, 1995, PID Controllers: Theory, Design and Tuning
[8]   A necessary stabilization condition for PID control [J].
Bajcinca, N .
ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, :4237-4241
[9]  
Bajcinca Naim, 2007, Proceedings of the European Control Conference 2007 (ECC), P548
[10]   Design of robust PID controllers using decoupling at singular frequencies [J].
Bajcinca, Naim .
AUTOMATICA, 2006, 42 (11) :1943-1949