Passivity for Multiadaptive Coupled Fractional-Order Reaction-Diffusion Neural Networks

被引:5
作者
Wang, Jin-Liang [1 ]
Liu, Chen-Guang [2 ]
Liu, Xiao-Lu [3 ]
Huang, Lina [4 ]
Huang, Tingwen [5 ]
机构
[1] Tiangong Univ, Sch Comp Sci & Technol, Tianjin Key Lab Autonomous Intelligence Technol &, Tianjin 300387, Peoples R China
[2] Beihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
[3] Tian Gong Univ, Sch Comp Sci & Technol, Tianjin 300387, Peoples R China
[4] Tongji Univ, Shanghai Res Inst Intelligent Autonomous Syst, Shanghai 201210, Peoples R China
[5] Texas A&M Univ Qatar, Sci Program, Doha 23874, Qatar
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2024年 / 8卷 / 02期
基金
中国国家自然科学基金;
关键词
Coupled fractional-order reaction-diffusion neural networks (CFRNNs); multiadaptive couplings; output strict passivity; synchronization; STABILITY; SYNCHRONIZATION; STABILIZATION; PERIODICITY; TERMS;
D O I
10.1109/TETCI.2023.3341330
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The passivity and passivity-based synchronization for a type of coupled fractional-order reaction-diffusion neural networks (CFRNNs) with multiadaptive couplings are discussed in this paper. On one hand, by designing suitable integer-order and fractional-order coupling weight updating schemes, several output strict passivity criteria for CFRNNs are developed. On the other hand, the output strict passivity is exploited to tackle the synchronization of CFRNNs, and several sufficient conditions are derived based on the properties of Laplace transform and Mittag-Leffler functions. Finally, the effectiveness of the devised coupling weight updating strategies are substantiated by numerical examples.
引用
收藏
页码:1350 / 1361
页数:12
相关论文
共 53 条
[21]   Boundary Mittag-Leffler stabilization of fractional reaction-diffusion cellular neural networks [J].
Liu, Xiao-Zhen ;
Li, Ze-Tao ;
Wu, Kai-Ning .
NEURAL NETWORKS, 2020, 132 :269-280
[22]   Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions [J].
Lu, Jun Guo .
CHAOS SOLITONS & FRACTALS, 2008, 35 (01) :116-125
[23]   Edge-Based Fractional-Order Adaptive Strategies for Synchronization of Fractional-Order Coupled Networks With Reaction-Diffusion Terms [J].
Lv, Yujiao ;
Hu, Cheng ;
Yu, Juan ;
Jiang, Haijun ;
Huang, Tingwen .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (04) :1582-1594
[24]  
Miller K., 1999, REAL ANAL EXCH, V23, P753, DOI DOI 10.2307/44153996
[25]   Exact coexistence and locally asymptotic stability of multiple equilibria for fractional-order delayed Hopfield neural networks with Gaussian activation function [J].
Nie, Xiaobing ;
Liu, Pingping ;
Liang, Jinling ;
Cao, Jinde .
NEURAL NETWORKS, 2021, 142 :690-700
[26]  
Podlubny I, 1999, Fractional Differential Equations, DOI DOI 10.12691/AJMA-1-1-3
[27]   Finite-Time Output Synchronization of Multiple Weighted Reaction-Diffusion Neural Networks With Adaptive Output Couplings [J].
Qiu, Qian ;
Su, Housheng .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) :169-181
[28]   Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis [J].
Rajchakit, G. ;
Sriraman, R. ;
Vignesh, P. ;
Lim, C. P. .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 407
[29]   Exponential stability in the Lagrange sense for Clifford-valued recurrent neural networks with time delays [J].
Rajchakit, G. ;
Sriraman, R. ;
Boonsatit, N. ;
Hammachukiattikul, P. ;
Lim, C. P. ;
Agarwal, P. .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[30]   Global exponential stability of Clifford-valued neural networks with time-varying delays and impulsive effects [J].
Rajchakit, G. ;
Sriraman, R. ;
Boonsatit, N. ;
Hammachukiattikul, P. ;
Lim, C. P. ;
Agarwal, P. .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)