Passivity for Multiadaptive Coupled Fractional-Order Reaction-Diffusion Neural Networks

被引:3
|
作者
Wang, Jin-Liang [1 ]
Liu, Chen-Guang [2 ]
Liu, Xiao-Lu [3 ]
Huang, Lina [4 ]
Huang, Tingwen [5 ]
机构
[1] Tiangong Univ, Sch Comp Sci & Technol, Tianjin Key Lab Autonomous Intelligence Technol &, Tianjin 300387, Peoples R China
[2] Beihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
[3] Tian Gong Univ, Sch Comp Sci & Technol, Tianjin 300387, Peoples R China
[4] Tongji Univ, Shanghai Res Inst Intelligent Autonomous Syst, Shanghai 201210, Peoples R China
[5] Texas A&M Univ Qatar, Sci Program, Doha 23874, Qatar
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2024年 / 8卷 / 02期
基金
中国国家自然科学基金;
关键词
Coupled fractional-order reaction-diffusion neural networks (CFRNNs); multiadaptive couplings; output strict passivity; synchronization; STABILITY; SYNCHRONIZATION; STABILIZATION; PERIODICITY; TERMS;
D O I
10.1109/TETCI.2023.3341330
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The passivity and passivity-based synchronization for a type of coupled fractional-order reaction-diffusion neural networks (CFRNNs) with multiadaptive couplings are discussed in this paper. On one hand, by designing suitable integer-order and fractional-order coupling weight updating schemes, several output strict passivity criteria for CFRNNs are developed. On the other hand, the output strict passivity is exploited to tackle the synchronization of CFRNNs, and several sufficient conditions are derived based on the properties of Laplace transform and Mittag-Leffler functions. Finally, the effectiveness of the devised coupling weight updating strategies are substantiated by numerical examples.
引用
收藏
页码:1350 / 1361
页数:12
相关论文
共 50 条
  • [1] Stabilization of reaction-diffusion fractional-order memristive neural networks
    Li, Ruoxia
    Cao, Jinde
    Li, Ning
    NEURAL NETWORKS, 2023, 165 : 290 - 297
  • [2] Synchronization and adaptive control for coupled fractional-order reaction-diffusion neural networks with multiple couplings
    Wang, Jin-Liang
    Du, Xin-Yu
    Liu, Chen-Guang
    ISA TRANSACTIONS, 2023, 136 : 93 - 103
  • [3] Edge-Based Fractional-Order Adaptive Strategies for Synchronization of Fractional-Order Coupled Networks With Reaction-Diffusion Terms
    Lv, Yujiao
    Hu, Cheng
    Yu, Juan
    Jiang, Haijun
    Huang, Tingwen
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (04) : 1582 - 1594
  • [4] Passivity Analysis of Coupled Reaction-Diffusion Neural Networks With Dirichlet Boundary Conditions
    Wang, Jin-Liang
    Wu, Huai-Ning
    Huang, Tingwen
    Ren, Shun-Yan
    Wu, Jigang
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (08): : 2148 - 2159
  • [5] Adaptive Output Synchronization of Coupled Fractional-Order Memristive Reaction-Diffusion Neural Networks
    You, Feng
    Tang, Hong-An
    Wang, Yanhong
    Xia, Zi-Yi
    Li, Jin-Wei
    FRACTAL AND FRACTIONAL, 2024, 8 (02)
  • [6] Passivity of fractional-order coupled neural networks with interval uncertainties
    Qiu, Hongling
    Cao, Jinde
    Liu, Heng
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 205 : 845 - 860
  • [7] Adaptive quasi-synchronization control of heterogeneous fractional-order coupled neural networks with reaction-diffusion
    Chen, Wei
    Yu, Yongguang
    Hai, Xudong
    Ren, Guojian
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 427
  • [8] Passivity and Passivity-Based Synchronization of Switched Coupled Reaction-Diffusion Neural Networks with State and Spatial Diffusion Couplings
    Huang, Yanli
    Ren, Shunyan
    NEURAL PROCESSING LETTERS, 2018, 47 (02) : 347 - 363
  • [9] Passivity of fractional reaction-diffusion systems
    Cao, Yan
    Zhou, Wei-Jie
    Liu, Xiao-Zhen
    Wu, Kai-Ning
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 476
  • [10] Passivity and synchronization of switched coupled reaction-diffusion neural networks with non-delayed and delayed couplings
    Huang, Yan-Li
    Ren, Shun-Yan
    Wu, Jigang
    Xu, Bei-Bei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (09) : 1702 - 1722