Dynamical Nonequilibrium Molecular Dynamics Simulations Identify Allosteric Sites and Positions Associated with Drug Resistance in the SARS-CoV-2 Main Protease

被引:19
作者
Chan, H. T. Henry [1 ,2 ]
Oliveira, A. Sofia F. [3 ,4 ]
Schofield, Christopher J. [1 ,2 ]
Mulholland, Adrian J. [3 ]
Duarte, Fernanda [1 ,2 ]
机构
[1] Univ Oxford, Dept Chem, Chem Res Lab, Oxford OX1 3TA, England
[2] Univ Oxford, Ineos Oxford Inst Antimicrobial Res, Oxford OX1 3TA, England
[3] Univ Bristol, Sch Chem, Ctr Computat Chem, Bristol BS8 1TS, Avon, England
[4] Univ Bristol, Sch Biochem, Bristol BS8 1TD, Avon, England
来源
JACS AU | 2023年 / 3卷 / 06期
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
SARS-CoV-2; main protease; coronavirus; molecular dynamics; nonequilibrium; protein dynamics; allosteric; drug resistance; PARTICLE MESH EWALD; M-PRO; INHIBITION; MECHANISM; DESIGN;
D O I
10.1021/jacsau.3c00185
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The SARS-CoV-2 main protease (Mpro) plays an essential role in the coronavirus lifecycle by catalyzing hydrolysis of the viral polyproteins at specific sites. Mpro is the target of drugs, such as nirmatrelvir, though resistant mutants have emerged that threaten drug efficacy. Despite its importance, questions remain on the mechanism of how Mpro binds its substrates. Here, we apply dynamical nonequilibrium molecular dynamics (D-NEMD) simulations to evaluate structural and dynamical responses of Mpro to the presence and absence of a substrate. The results highlight communication between the Mpro dimer subunits and identify networks, including some far from the active site, that link the active site with a known allosteric inhibition site, or which are associated with nirmatrelvir resistance. They imply that some mutations enable resistance by altering the allosteric behavior of Mpro. More generally, the results show the utility of the D-NEMD technique for identifying functionally relevant allosteric sites and networks including those relevant to resistance.
引用
收藏
页码:1767 / 1774
页数:8
相关论文
共 66 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   F508del disturbs the dynamics of the nucleotide binding domains of CFTR before and after ATP hydrolysis [J].
Abreu, Barbara ;
Lopes, Emanuel F. ;
Oliveira, A. S. F. ;
Soares, Claudio M. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2020, 88 (01) :113-126
[3]   Allosteric Binding Sites of the SARS-CoV-2 Main Protease: Potential Targets for Broad-Spectrum Anti-Coronavirus Agents [J].
Alzyoud, Lara ;
Ghattas, Mohammad A. ;
Atatreh, Noor .
DRUG DESIGN DEVELOPMENT AND THERAPY, 2022, 16 :2463-2478
[4]   Mechanism of inhibition of SARS-CoV-2 Mpro by N3 peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity [J].
Arafet, Kemel ;
Serrano-Aparicio, Natalia ;
Lodola, Alessio ;
Mulholland, Adrian J. ;
Gonzalez, Florenci, V ;
Swiderek, Katarzyna ;
Moliner, Vicent .
CHEMICAL SCIENCE, 2021, 12 (04) :1433-1444
[5]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[6]   L718Q mutant EGFR escapes covalent inhibition by stabilizing a non-reactive conformation of the lung cancer drug osimertinib [J].
Callegari, D. ;
Ranaghan, K. E. ;
Woods, C. J. ;
Minari, R. ;
Tiseo, M. ;
Mor, M. ;
Mulholland, A. J. ;
Lodola, A. .
CHEMICAL SCIENCE, 2018, 9 (10) :2740-2749
[7]   Discovery of SARS-CoV-2 Mpro peptide inhibitors from modelling substrate and ligand binding [J].
Chan, H. T. Henry ;
Moesser, Marc A. ;
Walters, Rebecca K. ;
Malla, Tika R. ;
Twidale, Rebecca M. ;
John, Tobias ;
Deeks, Helen M. ;
Johnston-Wood, Tristan ;
Mikhailov, Victor ;
Sessions, Richard B. ;
Dawson, William ;
Salah, Eidarus ;
Lukacik, Petra ;
Strain-Damerell, Claire ;
Owen, C. David ;
Nakajima, Takahito ;
Swiderek, Katarzyna ;
Lodola, Alessio ;
Moliner, Vicent ;
Glowacki, David R. ;
Spencer, James ;
Walsh, Martin A. ;
Schofield, Christopher J. ;
Genovese, Luigi ;
Shoemark, Deborah K. ;
Mulholland, Adrian J. ;
Duarte, Fernanda ;
Morris, Garrett M. .
CHEMICAL SCIENCE, 2021, 12 (41) :13686-13703
[8]   Dynamic Profiling of β-Coronavirus 3CL Mpro Protease Ligand-Binding Sites [J].
Cho, Eunice ;
Rosa, Margarida ;
Anjum, Ruhi ;
Mehmood, Saman ;
Soban, Mariya ;
Mujtaba, Moniza ;
Bux, Khair ;
Moin, Syed T. ;
Tanweer, Mohammad ;
Dantu, Sarath ;
Pandini, Alessandro ;
Yin, Junqi ;
Ma, Heng ;
Ramanathan, Arvind ;
Islam, Barira ;
Mey, Antonia S. J. S. ;
Bhowmik, Debsindhu ;
Haider, Shozeb .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (06) :3058-3073
[9]   THOUGHT-EXPERIMENTS BY MOLECULAR-DYNAMICS [J].
CICCOTTI, G ;
JACUCCI, G ;
MCDONALD, IR .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (01) :1-22
[10]   DIRECT COMPUTATION OF DYNAMICAL RESPONSE BY MOLECULAR-DYNAMICS - MOBILITY OF A CHARGED LENNARD-JONES PARTICLE [J].
CICCOTTI, G ;
JACUCCI, G .
PHYSICAL REVIEW LETTERS, 1975, 35 (12) :789-792