Uncertainty-aware deep-learning model for prediction of supratentorial hematoma expansion from admission non-contrast head computed tomography scan

被引:11
作者
Tran, Anh T. [1 ]
Zeevi, Tal [1 ]
Haider, Stefan P. [1 ,2 ]
Abou Karam, Gaby [1 ]
Berson, Elisa R. [1 ]
Tharmaseelan, Hishan [1 ]
Qureshi, Adnan I. [3 ,4 ]
Sanelli, Pina C. [5 ]
Werring, David J. [6 ]
Malhotra, Ajay [1 ]
Petersen, Nils H. [7 ]
de Havenon, Adam [7 ]
Falcone, Guido J. [7 ]
Sheth, Kevin N. [7 ]
Payabvash, Seyedmehdi [1 ]
机构
[1] Yale Sch Med, Dept Radiol & Biomed Imaging, New Haven, CT 06510 USA
[2] Ludwig Maximilians Univ Munchen, Dept Otorhinolaryngol, Univ Hosp, Munich, Germany
[3] Univ Missouri, Stroke Inst, Columbia, MO USA
[4] Univ Missouri, Dept Neurol, Columbia, MO USA
[5] Northwell Hlth, Dept Radiol, Manhasset, NY USA
[6] UCL, Queen Sq Inst Neurol, Stroke Res Ctr, London, England
[7] Yale Sch Med, Dept Neurol, New Haven, CT 06510 USA
基金
美国国家卫生研究院;
关键词
HEMORRHAGE; GROWTH; SIGN; RADIOMICS;
D O I
10.1038/s41746-024-01007-w
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Hematoma expansion (HE) is a modifiable risk factor and a potential treatment target in patients with intracerebral hemorrhage (ICH). We aimed to train and validate deep-learning models for high-confidence prediction of supratentorial ICH expansion, based on admission non-contrast head Computed Tomography (CT). Applying Monte Carlo dropout and entropy of deep-learning model predictions, we estimated the model uncertainty and identified patients at high risk of HE with high confidence. Using the receiver operating characteristics area under the curve (AUC), we compared the deep-learning model prediction performance with multivariable models based on visual markers of HE determined by expert reviewers. We randomly split a multicentric dataset of patients (4-to-1) into training/cross-validation (n = 634) versus test (n = 159) cohorts. We trained and tested separate models for prediction of >= 6 mL and >= 3 mL ICH expansion. The deep-learning models achieved an AUC = 0.81 for high-confidence prediction of HE >= 6 mL and AUC = 0.80 for prediction of HE >= 3 mL, which were higher than visual maker models AUC = 0.69 for HE >= 6 mL (p = 0.036) and AUC = 0.68 for HE >= 3 mL (p = 0.043). Our results show that fully automated deep-learning models can identify patients at risk of supratentorial ICH expansion based on admission non-contrast head CT, with high confidence, and more accurately than benchmark visual markers.
引用
收藏
页数:11
相关论文
共 64 条
[31]   Accuracy of the Blend Sign on Computed Tomography as a Predictor of Hematoma Growth after Spontaneous Intracerebral Hemorrhage: A Systematic Review [J].
Lei, Chunyan ;
Geng, Jia ;
Chen, Chun ;
Chang, Xiaolong .
JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2018, 27 (06) :1705-1710
[32]   Ultra-Early Blood Pressure Reduction Attenuates Hematoma Growth and Improves Outcome in Intracerebral Hemorrhage [J].
Li, Qi ;
Warren, Andrew D. ;
Qureshi, Adnan, I ;
Morotti, Andrea ;
Falcone, Guido J. ;
Sheth, Kevin N. ;
Shoamanesh, Ashkan ;
Dowlatshahi, Dar ;
Viswanathan, Anand ;
Goldstein, Joshua N. .
ANNALS OF NEUROLOGY, 2020, 88 (02) :388-395
[33]   Island Sign An Imaging Predictor for Early Hematoma Expansion and Poor Outcome in Patients With Intracerebral Hemorrhage [J].
Li, Qi ;
Liu, Qing-Jun ;
Yang, Wen-Song ;
Wang, Xing-Chen ;
Zhao, Li-Bo ;
Xiong, Xin ;
Li, Rui ;
Cao, Du ;
Zhu, Dan ;
Wei, Xiao ;
Xie, Peng .
STROKE, 2017, 48 (11) :3019-+
[34]   Blend Sign on Computed Tomography Novel and Reliable Predictor for Early Hematoma Growth in Patients With Intracerebral Hemorrhage [J].
Li, Qi ;
Zhang, Gang ;
Huang, Yuan-Jun ;
Dong, Mei-Xue ;
Lv, Fa-Jin ;
Wei, Xiao ;
Chen, Jian-Jun ;
Zhang, Li-Juan ;
Qin, Xin-Yue ;
Xie, Peng .
STROKE, 2015, 46 (08) :2119-2123
[35]   Hematoma Expansion in Intracerebral Hemorrhage: An Update on Prediction and Treatment [J].
Li, Zhifang ;
You, Mingfeng ;
Long, Chunnan ;
Bi, Rentang ;
Xu, Haoqiang ;
He, Quanwei ;
Hu, Bo .
FRONTIERS IN NEUROLOGY, 2020, 11
[36]   Automatic and Efficient Prediction of Hematoma Expansion in Patients with Hypertensive Intracerebral Hemorrhage Using Deep Learning Based on CT Images [J].
Ma, Chao ;
Wang, Liyang ;
Gao, Chuntian ;
Liu, Dongkang ;
Yang, Kaiyuan ;
Meng, Zhe ;
Liang, Shikai ;
Zhang, Yupeng ;
Wang, Guihuai .
JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (05)
[37]   Radiomics for predicting hematoma expansion in patients with hypertensive intraparenchymal hematomas [J].
Ma, Chao ;
Zhang, Yupeng ;
Niyazi, Tuerdialimu ;
Wei, Jian ;
Guocai, Guo ;
Liu, Jianan ;
Liang, Shikai ;
Liang, Fei ;
Yan, Peng ;
Wang, Kun ;
Jiang, Chuhan .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 115 :10-15
[38]   Standards for Detecting, Interpreting, and Reporting Noncontrast Computed Tomographic Markers of Intracerebral Hemorrhage Expansion [J].
Morotti, Andrea ;
Boulouis, Gregoire ;
Dowlatshahi, Dar ;
Li, Qi ;
Barras, Christen D. ;
Delcourt, Candice ;
Yu, Zhiyuan ;
Zheng, Jun ;
Zhou, Zien ;
Aviv, Richard, I ;
Shoamanesh, Ashkan ;
Sporns, Peter B. ;
Rosand, Jonathan ;
Greenberg, Steven M. ;
Salman, Rustam Al-Shahi ;
Qureshi, Adnan, I ;
Demchuk, Andrew M. ;
Anderson, Craig S. ;
Goldstein, Joshua N. ;
Charidimou, Andreas .
ANNALS OF NEUROLOGY, 2019, 86 (04) :480-492
[39]   Reproducibility of CT-based radiomic features against image resampling and perturbations for tumour and healthy kidney in renal cancer patients [J].
Mottola, Margherita ;
Ursprung, Stephan ;
Rundo, Leonardo ;
Sanchez, Lorena Escudero ;
Klatte, Tobias ;
Mendichovszky, Iosif ;
Stewart, Grant D. ;
Sala, Evis ;
Bevilacqua, Alessandro .
SCIENTIFIC REPORTS, 2021, 11 (01)
[40]   The Impact of Resampling and Denoising Deep Learning Algorithms on Radiomics in Brain Metastases MRI [J].
Moummad, Ilyass ;
Jaudet, Cyril ;
Lechervy, Alexis ;
Valable, Samuel ;
Raboutet, Charlotte ;
Soilihi, Zamila ;
Thariat, Juliette ;
Falzone, Nadia ;
Lacroix, Joelle ;
Batalla, Alain ;
Corroyer-Dulmont, Aurelien .
CANCERS, 2022, 14 (01)