Uncertainty-aware deep-learning model for prediction of supratentorial hematoma expansion from admission non-contrast head computed tomography scan

被引:11
作者
Tran, Anh T. [1 ]
Zeevi, Tal [1 ]
Haider, Stefan P. [1 ,2 ]
Abou Karam, Gaby [1 ]
Berson, Elisa R. [1 ]
Tharmaseelan, Hishan [1 ]
Qureshi, Adnan I. [3 ,4 ]
Sanelli, Pina C. [5 ]
Werring, David J. [6 ]
Malhotra, Ajay [1 ]
Petersen, Nils H. [7 ]
de Havenon, Adam [7 ]
Falcone, Guido J. [7 ]
Sheth, Kevin N. [7 ]
Payabvash, Seyedmehdi [1 ]
机构
[1] Yale Sch Med, Dept Radiol & Biomed Imaging, New Haven, CT 06510 USA
[2] Ludwig Maximilians Univ Munchen, Dept Otorhinolaryngol, Univ Hosp, Munich, Germany
[3] Univ Missouri, Stroke Inst, Columbia, MO USA
[4] Univ Missouri, Dept Neurol, Columbia, MO USA
[5] Northwell Hlth, Dept Radiol, Manhasset, NY USA
[6] UCL, Queen Sq Inst Neurol, Stroke Res Ctr, London, England
[7] Yale Sch Med, Dept Neurol, New Haven, CT 06510 USA
基金
美国国家卫生研究院;
关键词
HEMORRHAGE; GROWTH; SIGN; RADIOMICS;
D O I
10.1038/s41746-024-01007-w
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Hematoma expansion (HE) is a modifiable risk factor and a potential treatment target in patients with intracerebral hemorrhage (ICH). We aimed to train and validate deep-learning models for high-confidence prediction of supratentorial ICH expansion, based on admission non-contrast head Computed Tomography (CT). Applying Monte Carlo dropout and entropy of deep-learning model predictions, we estimated the model uncertainty and identified patients at high risk of HE with high confidence. Using the receiver operating characteristics area under the curve (AUC), we compared the deep-learning model prediction performance with multivariable models based on visual markers of HE determined by expert reviewers. We randomly split a multicentric dataset of patients (4-to-1) into training/cross-validation (n = 634) versus test (n = 159) cohorts. We trained and tested separate models for prediction of >= 6 mL and >= 3 mL ICH expansion. The deep-learning models achieved an AUC = 0.81 for high-confidence prediction of HE >= 6 mL and AUC = 0.80 for prediction of HE >= 3 mL, which were higher than visual maker models AUC = 0.69 for HE >= 6 mL (p = 0.036) and AUC = 0.68 for HE >= 3 mL (p = 0.043). Our results show that fully automated deep-learning models can identify patients at risk of supratentorial ICH expansion based on admission non-contrast head CT, with high confidence, and more accurately than benchmark visual markers.
引用
收藏
页数:11
相关论文
共 64 条
[1]  
Abdar M, 2021, Arxiv, DOI arXiv:2011.06225
[2]   Diagnostic Accuracy and Reliability of Noncontrast Computed Tomography Markers for Acute Hematoma Expansion among Radiologists [J].
Almubarak, Hawra ;
Elsayed, Sarah ;
Mazzacane, Federico ;
Schlunk, Frieder ;
Cao, Haoyin ;
Vu, Ly Huong ;
Vogt, Estelle ;
Orco, Andrea Dell ;
Desser, Dmitriy ;
Boehmer, Maik F. H. ;
Akkurt, Burak Han ;
Sporns, Peter B. ;
Penzkofer, Tobias ;
Hanning, Uta ;
Morotti, Andrea ;
Nawabi, Jawed .
TOMOGRAPHY, 2022, 8 (06) :2893-2901
[3]   In spontaneous intracerebral hematoma patients, prediction of the hematoma expansion risk and mortality risk using radiological and clinical markers and a newly developed scale [J].
Bakar, Bulent ;
Akkaya, Suleyman ;
Say, Bahar ;
Yuksel, Ulas ;
Alhan, Aslihan ;
Turgut, Esra ;
Ogden, Mustafa ;
Ergun, Ufuk .
NEUROLOGICAL RESEARCH, 2021, 43 (06) :482-495
[4]   The need for uncertainty quantification in machine-assisted medical decision making [J].
Begoli, Edmon ;
Bhattacharya, Tanmoy ;
Kusnezov, Dimitri .
NATURE MACHINE INTELLIGENCE, 2019, 1 (01) :20-23
[5]   Intracerebral Hematoma Morphologic Appearance on Noncontrast Computed Tomography Predicts Significant Hematoma Expansion [J].
Blacquiere, Dylan ;
Demchuk, Andrew M. ;
Al-Hazzaa, Mohammed ;
Deshpande, Anirudda ;
Petrcich, William ;
Aviv, Richard I. ;
Rodriguez-Luna, David ;
Molina, Carlos A. ;
Silva Blas, Yolanda ;
Dzialowski, Imanuel ;
Czlonkowska, Anna ;
Boulanger, Jean-Martin ;
Lum, Cheemun ;
Gubitz, Gord ;
Padma, Vasantha ;
Roy, Jayanta ;
Kase, Carlos S. ;
Bhatia, Rohit ;
Hill, Michael D. ;
Dowlatshahi, Dar .
STROKE, 2015, 46 (11) :3111-3116
[6]   Early hemorrhage growth in patients with intracerebral hemorrhage [J].
Brott, T ;
Broderick, J ;
Kothari, R ;
Barsan, W ;
Tomsick, T ;
Sauerbeck, L ;
Spilker, J ;
Duldner, J ;
Khoury, J .
STROKE, 1997, 28 (01) :1-5
[7]   Predicting Hematoma Expansion After Primary Intracerebral Hemorrhage [J].
Brouwers, H. Bart ;
Chang, Yuchiao ;
Falcone, Guido J. ;
Cai, Xuemei ;
Ayres, Alison M. ;
Battey, Thomas W. K. ;
Vashkevich, Anastasia ;
McNamara, Kristen A. ;
Valant, Valerie ;
Schwab, Kristin ;
Orzell, Susannah C. ;
Bresette, Linda M. ;
Feske, Steven K. ;
Rost, Natalia S. ;
Romero, Javier M. ;
Viswanathan, Anand ;
Chou, Sherry H. -Y. ;
Greenberg, Steven M. ;
Rosand, Jonathan ;
Goldstein, Joshua N. .
JAMA NEUROLOGY, 2014, 71 (02) :158-164
[8]   Clinical-radiomics Nomogram for Risk Estimation of Early Hematoma Expansion after Acute Intracerebral Hemorrhage [J].
Chen, Qian ;
Zhu, Dongqin ;
Liu, Jinjin ;
Zhang, Mingyue ;
Xu, Haoli ;
Xiang, Yilan ;
Zhan, Chenyi ;
Zhang, Yong ;
Huang, Shengwei ;
Yang, Yunjun .
ACADEMIC RADIOLOGY, 2021, 28 (03) :307-317
[9]   Hematoma growth and outcomes in intracerebral hemorrhage The INTERACT1 study [J].
Delcourt, Candice ;
Huang, Yining ;
Arima, Hisatomi ;
Chalmers, John ;
Davis, Stephen M. ;
Heeley, Emma L. ;
Wang, Jiguang ;
Parsons, Mark W. ;
Liu, Guorong ;
Anderson, Craig S. .
NEUROLOGY, 2012, 79 (04) :314-319
[10]  
Demchuk AM, 2012, LANCET NEUROL, V11, P307, DOI 10.1016/S1474-4422(12)70038-8