Track-Oriented Marginal Poisson Multi-Bernoulli Mixture Filter for Extended Target Tracking

被引:4
作者
Du Haocui [1 ,2 ]
Xie Weixin [1 ,2 ]
Liu Zongxiang [1 ,2 ]
Li Liangqun [1 ,2 ]
机构
[1] Shenzhen Univ, ATR Key Lab, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Extended target tracking; Random finite set; Poisson multi-Bernoulli mixture; Poisson point process; Marginal distribution; Target trajectory; ASSOCIATION; DERIVATION; ALGORITHM; OBJECT;
D O I
10.23919/cje.2021.00.194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we derive and propose a track-oriented marginal Poisson multi-Bernoulli mixture (TO-MPMBM) filter to address the problem that the standard random finite set filters cannot build continuous trajectories for multiple extended targets. First, the Poisson point process model and the multi-Bernoulli mixture (MBM) model are used to establish the set of birth trajectories and the set of existing trajectories, respectively. Second, the proposed filter recursively propagates the marginal association distributions and the Poisson multi-Bernoulli mixture (PMBM) density over the set of alive trajectories. Finally, after pruning and merging process, the trajectories with existence probability greater than the given threshold are extracted as the estimated target trajectories. A comparison of the proposed filter with the existing trajectory filters in two classical scenarios confirms the validity and reliability of the TO-MPMBM filter.
引用
收藏
页码:1106 / 1119
页数:14
相关论文
共 35 条
[1]  
[Anonymous], 2008, 2008 11 INT C INF FU
[2]   Labeled Random Finite Sets and Multi-Object Conjugate Priors [J].
Ba-Tuong Vo ;
Ba-Ngu Vo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (13) :3460-3475
[3]  
Baum M, 2009, IEEE INT SYMP SIGNAL, P178, DOI 10.1109/ISSPIT.2009.5407526
[4]   Multiple Extended Target Tracking With Labeled Random Finite Sets [J].
Beard, Michael ;
Reuter, Stephan ;
Granstrom, Karl ;
Vo, Ba-Tuong ;
Vo, Ba-Ngu ;
Scheel, Alexander .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (07) :1638-1653
[5]  
Beard M, 2015, 2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), P991
[6]   The histogram Poisson, labeled multi-Bernoulli multi-target tracking filter [J].
Cament, Leonardo ;
Correa, Javier ;
Adams, Martin ;
Perez, Claudio .
SIGNAL PROCESSING, 2020, 176
[7]   Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter [J].
Du, Haocui ;
Xie, Weixin .
SENSORS, 2020, 20 (18) :1-15
[8]   Poisson Multi-Bernoulli Mapping Using Gibbs Sampling [J].
Fatemi, Maryam ;
Granstrom, Karl ;
Svensson, Lennart ;
Ruiz, Francisco J. R. ;
Hammarstrand, Lars .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (11) :2814-2827
[9]   Bayesian approach to multiple extended targets tracking with random hypersurface models [J].
Gao, Lei ;
Jing, Zhongliang ;
Li, Minzhe ;
Pan, Han .
IET RADAR SONAR AND NAVIGATION, 2019, 13 (04) :601-611
[10]   Multiple Target Tracking Based on Sets of Trajectories [J].
Garcia-Fernandez, Angel F. ;
Svensson, Lennart ;
Morelande, Mark R. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (03) :1685-1707