Track-Oriented Marginal Poisson Multi-Bernoulli Mixture Filter for Extended Target Tracking

被引:4
作者
Du Haocui [1 ,2 ]
Xie Weixin [1 ,2 ]
Liu Zongxiang [1 ,2 ]
Li Liangqun [1 ,2 ]
机构
[1] Shenzhen Univ, ATR Key Lab, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Extended target tracking; Random finite set; Poisson multi-Bernoulli mixture; Poisson point process; Marginal distribution; Target trajectory; ASSOCIATION; DERIVATION; ALGORITHM; OBJECT;
D O I
10.23919/cje.2021.00.194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we derive and propose a track-oriented marginal Poisson multi-Bernoulli mixture (TO-MPMBM) filter to address the problem that the standard random finite set filters cannot build continuous trajectories for multiple extended targets. First, the Poisson point process model and the multi-Bernoulli mixture (MBM) model are used to establish the set of birth trajectories and the set of existing trajectories, respectively. Second, the proposed filter recursively propagates the marginal association distributions and the Poisson multi-Bernoulli mixture (PMBM) density over the set of alive trajectories. Finally, after pruning and merging process, the trajectories with existence probability greater than the given threshold are extracted as the estimated target trajectories. A comparison of the proposed filter with the existing trajectory filters in two classical scenarios confirms the validity and reliability of the TO-MPMBM filter.
引用
收藏
页码:1106 / 1119
页数:14
相关论文
共 50 条
  • [1] Sequential Monte Carlo Implementation of the Track-Oriented Marginal Multi-Bernoulli/Poisson Filter
    Kropfreiter, Thomas
    Meyer, Florian
    Hlawatsch, Franz
    2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 972 - 979
  • [2] Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter
    Du, Haocui
    Xie, Weixin
    SENSORS, 2020, 20 (18) : 1 - 15
  • [3] The Multiple Model Poisson Multi-Bernoulli Mixture Filter for Extended Target Tracking
    Xie, Xingxiang
    Wang, Yang
    Guo, Junqi
    Zhou, Rundong
    IEEE SENSORS JOURNAL, 2023, 23 (13) : 14304 - 14314
  • [4] Time-Matching Poisson Multi-Bernoulli Mixture Filter For Multi-Target Tracking In Sensor Scanning Mode
    Lu, Xingchen
    Jing, Dahai
    Jiang, Defu
    Liu, Ming
    Gao, Yiyue
    Tian, Chenyong
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2023, 17 (06): : 1635 - 1656
  • [5] Extended target Poisson multi-Bernoulli mixture trackers based on sets of trajectories
    Xia, Yuxuan
    Granstrom, Karl
    Svensson, Lennart
    Garcia-Fernandez, Angel F.
    Williams, Jason L.
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [6] A Poisson Multi-Bernoulli Mixture Filter for Coexisting Point and Extended Targets
    Garcia-Fernandez, Angel
    Williams, Jason
    Svensson, Lennart
    Xia, Yuxuan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 2600 - 2610
  • [7] A gaussian mixture extended-target multi-Bernoulli filter
    Zhang, Guanghua
    Lian, Feng
    Han, Chongzhao
    Yao, Lingling
    Lian, Feng, 1600, Xi'an Jiaotong University (48): : 9 - 14
  • [8] Poisson Multi-Bernoulli Mixture Conjugate Prior for Multiple Extended Target Filtering
    Granstrom, Karl
    Fatemi, Maryam
    Svensson, Lennart
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (01) : 208 - 225
  • [9] A Poisson multi-Bernoulli filter with target spawning
    Su, Zhenzhen
    Ji, Hongbing
    Zhang, Yongquan
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [10] An Improved Measurement-Oriented Marginal Multi-Bernoulli/Poisson Filter
    Su, Zhen-zhen
    Ji, Hong-bing
    Zhang, Yong-quan
    RADIOENGINEERING, 2019, 28 (01) : 191 - 198