Graph embedding on mass spectrometry- and sequencing-based biomedical data

被引:3
作者
Alvarez-Mamani, Edwin [1 ,2 ]
Dechant, Reinhard [2 ,3 ]
Beltran-Castanon, Cesar A. [1 ]
Ibanez, Alfredo J. [2 ,4 ]
机构
[1] Pontificia Univ Catolica Peru, Engn Dept, Lima, Peru
[2] Pontificia Univ Catolica Peru, Inst Om Sci & Appl Biotechnol ICOBA PUCP, Lima, Peru
[3] Calico Life Sci, 1170 Vet Blvd, San Francisco, CA 94080 USA
[4] Pontificia Univ Catolica Peru, Sci Dept, Lima, Peru
关键词
Graph embedding; Biomedical data; Biological network;
D O I
10.1186/s12859-023-05612-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Graph embedding techniques are using deep learning algorithms in data analysis to solve problems of such as node classification, link prediction, community detection, and visualization. Although typically used in the context of guessing friendships in social media, several applications for graph embedding techniques in biomedical data analysis have emerged. While these approaches remain computationally demanding, several developments over the last years facilitate their application to study biomedical data and thus may help advance biological discoveries. Therefore, in this review, we discuss the principles of graph embedding techniques and explore the usefulness for understanding biological network data derived from mass spectrometry and sequencing experiments, the current workhorses of systems biology studies. In particular, we focus on recent examples for characterizing protein-protein interaction networks and predicting novel drug functions.
引用
收藏
页数:19
相关论文
共 117 条
[1]  
Aggarwal M., 2020, Machine learning in social networks: embedding nodes, edges, communities, and graphs
[2]  
Ahmed Amr., 2013, Proceedings of the 22Nd International Conference on World Wide Web, P37
[3]  
[Anonymous], 2011, ICML
[4]  
[Anonymous], 2019, 28 INT JOINT C ART I
[5]   A Hybrid VAE Based Network Embedding Method for Biomedical Relation Mining [J].
Bai, Tian ;
Li, Ying ;
Wang, Ye ;
Huang, Lan .
NEURAL PROCESSING LETTERS, 2023, 55 (01) :81-92
[6]   Drug repurposing screens identify chemical entities for the development of COVID-19 interventions [J].
Bakowski, Malina A. ;
Beutler, Nathan ;
Wolff, Karen C. ;
Kirkpatrick, Melanie G. ;
Chen, Emily ;
Nguyen, Tu-Trinh H. ;
Riva, Laura ;
Shaabani, Namir ;
Parren, Mara ;
Ricketts, James ;
Gupta, Anil K. ;
Pan, Kastin ;
Kuo, Peiting ;
Fuller, MacKenzie ;
Garcia, Elijah ;
Teijaro, John R. ;
Yang, Linlin ;
Sahoo, Debashis ;
Chi, Victor ;
Huang, Edward ;
Vargas, Natalia ;
Roberts, Amanda J. ;
Das, Soumita ;
Ghosh, Pradipta ;
Woods, Ashley K. ;
Joseph, Sean B. ;
Hull, Mitchell V. ;
Schultz, Peter G. ;
Burton, Dennis R. ;
Chatterjee, Arnab K. ;
McNamara, Case W. ;
Rogers, Thomas F. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]   Leveraging heterogeneous network embedding for metabolic pathway prediction [J].
Basher, Abdur Rahman M. A. ;
Hallam, Steven J. .
BIOINFORMATICS, 2021, 37 (06) :822-829
[8]  
Belkin M, 2002, ADV NEUR IN, V14, P585
[9]  
Bordes A., 2011, AAAI, P301, DOI [DOI 10.1609/AAAI.V25I1.7917, 10.1609/aaai.v25i1.7917]
[10]  
Bordes A., 2013, Adv Neural Inf Process Syst, V26, P66