SunSpark: Fusion of time-domain and frequency-domain transformer for accurate identification of DC arc faults

被引:0
作者
Tian, Chunpeng [1 ]
Xu, Zhaoyang [2 ]
Liu, Yunjie [3 ]
Wang, Lukun [1 ]
Sun, Pu [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Intelligent Equipment, Tai An 271019, Peoples R China
[2] Univ Cambridge, Wellcome MRC Cambridge Stem Cell Inst, Cambridge, England
[3] Taishan Coll Sci & Technol, Sch Commun Engn, Tai An 271038, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 01期
关键词
signal processing; arc fault detection; artificial intelligence; time-domain and; frequency-domain fusion; SEQUENCE;
D O I
10.3934/era.2024016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Photovoltaic (PV) power generation is pivotal to the energy strategies of various nations, yet it is plagued by significant security challenges. This paper proposes a large-scale neural network model that integrates time-domain and frequency-domain techniques for the detection of arc faults in PV systems. The algorithm leverages sequence decomposition to extract trend information from current signals, and then applies the Fourier transform to convert various encoded data into the frequency domain. Due to the sparsity of frequency-domain information, the computational cost of extracting and processing information in the frequency domain is minimal, resulting in high efficiency. The selectively extracted information is then input into a separate lightweight classifier for classification and recognition. The proposed intelligent framework not only effectively filters out high-frequency noise signals, but also demonstrates strong robustness against various disturbances, yielding exceptional recognition performance with an accuracy rate consistently surpassing 97%. Code and data are available at this repository: https://github.com/yixizhuimeng?tab=projects.
引用
收藏
页码:332 / 353
页数:22
相关论文
共 46 条
[1]   Modeling high-current electrical arcs: A volt-ampere characteristic perspective for AC and DC systems [J].
Ammerman, Ravel F. ;
Sen, P. K. .
2007 39TH NORTH AMERICAN POWER SYMPOSIUM, VOLS 1 AND 2, 2007, :58-62
[2]  
Huang CZA, 2018, Arxiv, DOI [arXiv:1809.04281, 10.48550/arXiv.1809.04281]
[3]  
Cassie A. M., 1939, CIGRE Rep., V102
[4]   Wavelet-based protection strategy for series arc faults interfered by multicomponent noise signals in grid-connected photovoltaic systems [J].
Chen, Silei ;
Li, Xingwen ;
Meng, Yu ;
Xie, Zhimin .
SOLAR ENERGY, 2019, 183 :327-336
[5]   A novel series arc fault detection method for photovoltaic system based on multi-input neural network [J].
Chen, Xiaoqi ;
Gao, Wei ;
Hong, Cui ;
Tu, Yanzhao .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 140
[6]  
Colak Ilhami, 2012, INT C RENEWABLE ENER
[7]  
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
[8]   A draft sequence of the rice genome (Oryza sativa L. ssp japonica) [J].
Goff, SA ;
Ricke, D ;
Lan, TH ;
Presting, G ;
Wang, RL ;
Dunn, M ;
Glazebrook, J ;
Sessions, A ;
Oeller, P ;
Varma, H ;
Hadley, D ;
Hutchinson, D ;
Martin, C ;
Katagiri, F ;
Lange, BM ;
Moughamer, T ;
Xia, Y ;
Budworth, P ;
Zhong, JP ;
Miguel, T ;
Paszkowski, U ;
Zhang, SP ;
Colbert, M ;
Sun, WL ;
Chen, LL ;
Cooper, B ;
Park, S ;
Wood, TC ;
Mao, L ;
Quail, P ;
Wing, R ;
Dean, R ;
Yu, YS ;
Zharkikh, A ;
Shen, R ;
Sahasrabudhe, S ;
Thomas, A ;
Cannings, R ;
Gutin, A ;
Pruss, D ;
Reid, J ;
Tavtigian, S ;
Mitchell, J ;
Eldredge, G ;
Scholl, T ;
Miller, RM ;
Bhatnagar, S ;
Adey, N ;
Rubano, T ;
Tusneem, N .
SCIENCE, 2002, 296 (5565) :92-100
[9]   Design of a DC Series Arc Fault Detector for Photovoltaic System Protection [J].
Gu, Jyh-Cherng ;
Lai, De-Shin ;
Wang, Jing-Min ;
Huang, Jiang-Jun ;
Yang, Ming-Ta .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2019, 55 (03) :2464-2471
[10]  
Hastings J. K., 2012, Direct current arc fault circuit interrupter, direct current arc fault detector, noise blanking circuit for a direct current arc fault circuit interrupter, and method of detecting arc faults