Loopless algorithms to generate maximum length gray cycles wrt. k-character substitutions

被引:0
作者
Neraud, Jean [1 ]
机构
[1] Univ Rouen Normandie, LITIS, UR 4108, F-76000 Rouen, France
关键词
Character; Cycle; Gray; Hamming; Relation; Substitution; Word; CODE; NECKLACES; PERMUTATIONS; LANGUAGES; WORDS;
D O I
10.1016/j.tcs.2023.114175
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a binary word relation tau onto A* and a finite language X c A* , a tau-Gray cycle over X consists in a permutation (w[i])0 <= i <=|X|-1 of X such that each word w[i] is an image under tau of the previous word w[i-1]. We define the complexity measure lambda A ,tau(n) , equal to the largest cardinality of a language X having words of length at most n , and st. some tau-Gray cycle over X exists. The present paper is concerned with tau = sigma k , the so-called k- character substitution, st. (u , v) E sigma k holds if, and only if, the Hamming distance of u and v is k. We present loopless (resp., constant amortized time) algorithms for computing specific maximum length sigma k-Gray cycles. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 42 条
[1]  
Barcucci E, 1999, J DIFFER EQU APPL, V5, P435
[2]   Gray codes for Fibonacci q-decreasing words [J].
Baril, Jean-Luc ;
Kirgizov, Sergey ;
Vajnovszki, Vincent .
THEORETICAL COMPUTER SCIENCE, 2022, 927 :120-132
[3]   Gray code for derangements [J].
Baril, JL ;
Vajnovszki, V .
DISCRETE APPLIED MATHEMATICS, 2004, 140 (1-3) :207-221
[4]   Prefix partitioned gray codes for particular cross-bifix-free sets [J].
Bernini, Antonio ;
Bilotta, Stefano ;
Pinzani, Renzo ;
Sabri, Ahmad ;
Vajnovszki, Vincent .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2014, 6 (04) :359-369
[5]   Generating a Gray code for prefix normal words in amortized polylogarithmic time per word [J].
Burcsi, Peter ;
Fici, Gabriele ;
Liptak, Zsuzsanna ;
Raman, Rajeev ;
Sawada, Joe .
THEORETICAL COMPUTER SCIENCE, 2020, 842 :86-99
[6]   Distances between languages and reflexivity of relations [J].
Choffrut, C ;
Pighizzini, G .
THEORETICAL COMPUTER SCIENCE, 2002, 286 (01) :117-138
[7]   UNIVERSAL CYCLES FOR COMBINATORIAL STRUCTURES [J].
CHUNG, F ;
DIACONIS, P ;
GRAHAM, R .
DISCRETE MATHEMATICS, 1992, 110 (1-3) :43-59
[8]   AFFINE M-ARY GRAY CODES [J].
COHN, M .
INFORMATION AND CONTROL, 1963, 6 (01) :70-&
[9]   AN ALGORITHM FOR GENERATING SUBSETS OF FIXED SIZE WITH A STRONG MINIMAL CHANGE PROPERTY [J].
EADES, P ;
MCKAY, B .
INFORMATION PROCESSING LETTERS, 1984, 19 (03) :131-133
[10]   LOOPLESS ALGORITHMS FOR GENERATING PERMUTATIONS, COMBINATIONS, AND OTHER COMBINATORIAL CONFIGURATIONS [J].
EHRLICH, G .
JOURNAL OF THE ACM, 1973, 20 (03) :500-513