DOMAIN-SPECIFIC AND DOMAIN-COMMON FEATURE ENHANCEMENT FOR CROSS-DOMAIN FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION

被引:0
作者
Gao, Wenfei [1 ]
Liu, Fang [1 ,2 ]
Liu, Jia [1 ]
Xiao, Liang [1 ]
Tang, Xu [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Jiangsu Key Lab Spectral Imaging & Intelligent Se, Nanjing, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying, Mapping & Remote Sensing, Wuhan, Peoples R China
[3] Xidian Univ, Xian, Peoples R China
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
hyperspectral image classification; cross-domain; few-shot; domain adaptation; feature enhancement;
D O I
10.1109/IGARSS52108.2023.10281474
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
There is a small sample problem in hyperspectral image (HSI) classification task due to the difficulty of labeling samples. It is generally solved using a combination of few-shot learning and cross-domain method. In the paper, we propose a domain-specific and domain-common feature enhancement method for cross-domain few-shot HSI classification. It consists of a domain adaptation module and a feature enhancement module. The former is used to learn domain-specific features of both domains from the beginning of the network, and the latter is used to reduce domain differences by learning domain-common features through feature enhancement. The experimental results indicate that our proposed method performs better than the advanced classification methods.
引用
收藏
页码:7661 / 7664
页数:4
相关论文
共 12 条
[1]   Deep Relation Network for Hyperspectral Image Few-Shot Classification [J].
Gao, Kuiliang ;
Liu, Bing ;
Yu, Xuchu ;
Qin, Jinchun ;
Zhang, Pengqiang ;
Tan, Xiong .
REMOTE SENSING, 2020, 12 (06)
[2]  
Goodall C., 1988, Technometrics, V30, P351, DOI [DOI 10.2307/1270093, 10.1007/b98835]
[3]   Reflectance-Elevation Relationships and Their Seasonal Patterns over Twelve Glaciers in Western China Based on Landsat 8 Data [J].
Li, Xinwu ;
Wu, Wenjin ;
Xu, Baiqing ;
Yin, Siyang ;
Yang, Ruifang ;
Cheng, Shu .
REMOTE SENSING, 2017, 9 (03)
[4]   Deep Cross-Domain Few-Shot Learning for Hyperspectral Image Classification [J].
Li, Zhaokui ;
Liu, Ming ;
Chen, Yushi ;
Xu, Yimin ;
Li, Wei ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[5]  
Ling Z, 2018, 2018 24 INT C PATT R, P1, DOI 10.1109/ICPR.2018.8545709
[6]   Deep Few-Shot Learning for Hyperspectral Image Classification [J].
Liu, Bing ;
Yu, Xuchu ;
Yu, Anzhu ;
Zhang, Pengqiang ;
Wan, Gang ;
Wang, Ruirui .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04) :2290-2304
[7]   Unsupervised Spatial-Spectral Feature Learning by 3D Convolutional Autoencoder for Hyperspectral Classification [J].
Mei, Shaohui ;
Ji, Jingyu ;
Geng, Yunhao ;
Zhang, Zhi ;
Li, Xu ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09) :6808-6820
[8]   Learning Sensor-Specific Spatial-Spectral Features of Hyperspectral Images via Convolutional Neural Networks [J].
Mei, Shaohui ;
Ji, Jingyu ;
Hou, Junhui ;
Li, Xu ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08) :4520-4533
[9]   Classification of hyperspectral remote sensing images with support vector machines [J].
Melgani, F ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08) :1778-1790
[10]   Attention-Based Adaptive SpectralSpatial Kernel ResNet for Hyperspectral Image Classification [J].
Roy, Swalpa Kumar ;
Manna, Suvojit ;
Song, Tiecheng ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09) :7831-7843