Sharp Bounds and Precise Values for the Ni-Chromatic Number of Graphs

被引:0
作者
Yu, Yangfan [1 ]
Sun, Yuefang [1 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Zhejiang, Peoples R China
关键词
N-i-vertex coloring; N-i-chromatic number; vertex cover number; maximum degree; diameter; M-2-EDGE COLORINGS;
D O I
10.1142/S021926592350024X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let G be a connected undirected graph. A vertex coloring f of G is an N-i-vertex coloring if for each vertex x in G, the number of different colors assigned to N-G(x) is at most i. The N-i-chromatic number of G, denoted by t(i)(G), is the maximum number of colors which are used in an N-i-vertex coloring of G. In this paper, we provide sharp bounds for t(i)(G) of a graph G in terms of its vertex cover number, maximum degree and diameter, respectively. We also determine precise values for t(i)(G) in some cases.
引用
收藏
页数:11
相关论文
共 6 条
[1]   On N-2-vertex coloring of graphs [J].
Akbari, S. ;
Alipourfard, N. ;
Jandaghi, P. ;
Mirtaheri, M. .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (01)
[2]  
Czap J., 2011, Appl. Math. Sci., V5, P2437
[3]   M2-EDGE COLORINGS OF CACTI AND GRAPH JOINS [J].
Czap, Julius ;
Sugerek, Peter ;
Ivanco, Jaroslav .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (01) :59-69
[4]  
Eniego A. A., TIGHT BOUNDS N2 CHRO
[5]   M-2-EDGE COLORINGS OF DENSE GRAPHS [J].
Ivanco, Jaroslav .
OPUSCULA MATHEMATICA, 2016, 36 (05) :603-612
[6]  
Murty, 2008, GRAPH THEORY, DOI [DOI 10.1007/978-1-84628-970-5, 10.1007/978-1-84628-970-5]