Surface acoustic wave resonators on thin film piezoelectric substrates in the quantum regime

被引:10
作者
Luschmann, Thomas [1 ,2 ,3 ]
Jung, Alexander [1 ,2 ]
Gepraegs, Stephan [1 ]
Haslbeck, Franz X. [1 ,2 ,3 ]
Marx, Achim [1 ]
Filipp, Stefan [1 ,2 ,3 ]
Groblacher, Simon [4 ]
Gross, Rudolf [1 ,2 ,3 ]
Huebl, Hans [1 ,2 ,3 ]
机构
[1] Bayer Akad Wissensch, Walther Meissner Inst, Walther Meissner Str8, D-85748 Garching, Germany
[2] Tech Univ Munich, TUM Sch Nat Sci, Phys Dept, James Franck Str1, D-85748 Garching, Germany
[3] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr4, D-80799 Munich, Germany
[4] Delft Univ Technol, Kavli Inst Nanosci, Dept Quantum Nanosci, NL-2628 CJ Delft, Netherlands
来源
MATERIALS FOR QUANTUM TECHNOLOGY | 2023年 / 3卷 / 02期
基金
欧盟地平线“2020”;
关键词
surface acoustic waves; quantum acoustics; superconducting devices; LITHIUM-NIOBATE; MICROWAVE; STATE;
D O I
10.1088/2633-4356/acc9f6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium niobate (LNO) is a well established material for surface acoustic wave (SAW) devices including resonators, delay lines and filters. Recently, multi-layer substrates based on LNO thin films have become commercially available. Here, we present a systematic low-temperature study of the performance of SAW devices fabricated on LNO-on-insulator and LNO-on-Silicon substrates and compare them to bulk LNO devices. Our study aims at assessing the performance of these substrates for quantum acoustics, i.e. the integration with superconducting circuits operating in the quantum regime. To this end, we design SAW resonators with a target frequency of 5 GHz and perform experiments at millikelvin temperatures and microwave power levels corresponding to single photons or phonons. The devices are investigated regarding their internal quality factors as a function of the excitation power and temperature, which allows us to characterize and quantify losses and identify the dominating loss mechanism. For the measured devices, fitting the experimental data shows that the quality factors are limited by the coupling of the resonator to a bath of two-level-systems. Our results suggest that SAW devices on thin film LNO on silicon have comparable performance to devices on bulk LNO and are viable for use in SAW-based quantum acoustic devices.
引用
收藏
页数:9
相关论文
共 44 条
[1]   Non-exponential decay of a giant artificial atom [J].
Andersson, Gustav ;
Suri, Baladitya ;
Guo, Lingzhen ;
Aref, Thomas ;
Delsing, Per .
NATURE PHYSICS, 2019, 15 (11) :1123-1127
[2]  
Aref T., 2016, Superconducting Devices in Quantum Optics
[3]   Resolving the energy levels of a nanomechanical oscillator [J].
Arrangoiz-Arriola, Patricio ;
Wollack, E. Alex ;
Wang, Zhaoyou ;
Pechal, Marek ;
Jiang, Wentao ;
McKenna, Timothy P. ;
Witmer, Jeremy D. ;
Van Laer, Raphael ;
Safavi-Naeini, Amir H. .
NATURE, 2019, 571 (7766) :537-+
[4]  
Balram KC, 2016, NAT PHOTONICS, V10, P346, DOI [10.1038/NPHOTON.2016.46, 10.1038/nphoton.2016.46]
[5]   Phonon-mediated quantum state transfer and remote qubit entanglement [J].
Bienfait, A. ;
Satzinger, K. J. ;
Zhong, Y. P. ;
Chang, H. -S. ;
Chou, M. -H. ;
Conner, C. R. ;
Dumur, E. ;
Grebel, J. ;
Peairs, G. A. ;
Povey, R. G. ;
Cleland, A. N. .
SCIENCE, 2019, 364 (6438) :368-+
[6]   Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits [J].
Boes, Andreas ;
Corcoran, Bill ;
Chang, Lin ;
Bowers, John ;
Mitchell, Arnan .
LASER & PHOTONICS REVIEWS, 2018, 12 (04)
[7]   A compact photonic crystal micro-cavity on a single-mode lithium niobate photonic wire [J].
Cai, Lutong ;
Zhang, Shaomei ;
Hu, Hui .
JOURNAL OF OPTICS, 2016, 18 (03)
[8]   Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator [J].
Chu, Yiwen ;
Kharel, Prashanta ;
Yoon, Taekwan ;
Frunzio, Luigi ;
Rakich, Peter T. ;
Schoelkopf, Robert J. .
NATURE, 2018, 563 (7733) :666-670
[9]   Quantum acoustics with superconducting qubits [J].
Chu, Yiwen ;
Kharel, Prashanta ;
Renninger, William H. ;
Burkhart, Luke D. ;
Frunzio, Luigi ;
Rakich, Peter T. ;
Schoelkopf, Robert J. .
SCIENCE, 2017, 358 (6360) :199-202
[10]  
Datta S., 1986, Surface Acoustic Wave Devices