Network dynamics with higher-order interactions: coupled cell hypernetworks for identical cells and synchrony

被引:5
作者
Aguiar, Manuela [1 ]
Bick, Christian [2 ]
Dias, Ana [3 ]
机构
[1] Univ Porto, Ctr Matemat, Fac Econ, Rua Dr Roberto Frias, P-4200464 Porto, Portugal
[2] Vrije Univ Amsterdam, Dept Math, Boelelaan 1111, NL-1081 HV Amsterdam, Netherlands
[3] Univ Porto, Fac Ciencias, Ctr Matemat, Dept Matemat, Rua Campo Alegre 687, P-4169007 Porto, Portugal
基金
英国工程与自然科学研究理事会;
关键词
network dynamical systems; higher-order interactions; hypergraphs; synchronization; coupled cell networks; 37Nxx; DIRECTED HYPERGRAPHS; SYMMETRY; PATTERNS; LATTICE;
D O I
10.1088/1361-6544/ace39f
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Network interactions that are nonlinear in the state of more than two nodes-also known as higher-order interactions-can have a profound impact on the collective network dynamics. Here we develop a coupled cell hypernetwork formalism to elucidate the existence and stability of (cluster) synchronization patterns in network dynamical systems with higher-order interactions. More specifically, we define robust synchrony subspace for coupled cell hypernetworks whose coupling structure is determined by an underlying hypergraph and describe those spaces for general such hypernetworks. Since a hypergraph can be equivalently represented as a bipartite graph between its nodes and hyperedges, we relate the synchrony subspaces of a hypernetwork to balanced colourings of the corresponding incidence digraph.
引用
收藏
页码:4641 / 4673
页数:33
相关论文
共 50 条
[21]   Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes [J].
Zhang, Yuanzhao ;
Lucas, Maxime ;
Battiston, Federico .
NATURE COMMUNICATIONS, 2023, 14 (01)
[22]   The structure and dynamics of networks with higher order interactions [J].
Boccaletti, S. ;
De Lellis, P. ;
del Genio, C. I. ;
Alfaro-Bittner, K. ;
Criado, R. ;
Jalan, S. ;
Romance, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2023, 1018 :1-64
[23]   Chimeric states induced by higher-order interactions in coupled prey-predator systems [J].
Ghosh, Richita ;
Verma, Umesh Kumar ;
Jalan, Sarika ;
Shrimali, Manish Dev .
CHAOS, 2024, 34 (06)
[24]   Bifurcations in the Kuramoto model with external forcing and higher-order interactions [J].
Costa, Guilherme S. ;
Novaes, Marcel ;
de Aguiar, Marcus A. M. .
CHAOS, 2024, 34 (12)
[25]   Dynamics of Coupled Cell Networks: Synchrony, Heteroclinic Cycles and Inflation [J].
Aguiar, M. ;
Ashwin, P. ;
Dias, A. ;
Field, M. .
JOURNAL OF NONLINEAR SCIENCE, 2011, 21 (02) :271-323
[26]   Markov random fields with higher-order interactions [J].
Tjelmeland, H ;
Besag, J .
SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (03) :415-433
[27]   Higher-order interactions in Kuramoto oscillators with inertia [J].
Jaros, Patrycja ;
Ghosh, Subrata ;
Dudkowski, Dawid ;
Dana, Syamal K. ;
Kapitaniak, Tomasz .
PHYSICAL REVIEW E, 2023, 108 (02)
[28]   Understanding Higher-Order Interactions in Information Space [J].
Edelsbrunner, Herbert ;
Oelsboeck, Katharina ;
Wagner, Hubert .
ENTROPY, 2024, 26 (08)
[29]   Higher-Order Interactions Characterized in Cortical Activity [J].
Yu, Shan ;
Yang, Hongdian ;
Nakahara, Hiroyuki ;
Santos, Gustavo S. ;
Nikolic, Danko ;
Plenz, Dietmar .
JOURNAL OF NEUROSCIENCE, 2011, 31 (48) :17514-17526
[30]   Higher-order interactions promote chimera states [J].
Kundu, Srilena ;
Ghosh, Dibakar .
PHYSICAL REVIEW E, 2022, 105 (04)