Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm

被引:5
作者
Zaky, Alaa A. [1 ]
Ghoniem, Rania M. [2 ]
Selim, F. [1 ]
机构
[1] Kafrelsheikh Univ, Fac Engn, Elect Engn Dept, Kafrel Sheikh 33511, Egypt
[2] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Technol, POB 84428, Riyadh 11671, Saudi Arabia
关键词
PEMFC; parameter identification; bald eagle optimization; OPTIMAL PARAMETERS; IDENTIFICATION; PROGRESS; VERSION;
D O I
10.3390/su151310590
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The proton exchange membrane fuel cell (PEMFC) is a green energy converter that is based on the chemical reaction process. The behavior of this system can change with time due to aging and operating conditions. Knowing the current state of this system requires an accurate model, and an exact PEMFC model requires precise parameters. These parameters should be identified and used to properly fit the polarization curve in order to effectively replicate the PEMFC behavior. This work suggests a precise unknown PEMFC parameter extraction based on a new metaheuristic optimization algorithm called the modified bald eagle search algorithm (mBES). The mBES is an optimization algorithm based on the principles of bald eagle behavior that combines local search and global search to achieve a balance between the exploration and exploitation of search spaces. It is a powerful and efficient technique for optimization problems where accurate and near-optimal solutions are desired. To approve the accuracy of the proposed identification approach, the proposed algorithm is compared to the following metaheuristic algorithms: bald eagle search algorithm (BES), artificial ecosystem-based optimization (AEO), leader Harris Hawk's optimization (LHHO), rain optimization algorithm (ROA), sine cosine algorithm (SCA), and salp swarm algorithm (SSA). This evaluation process is applied to two commercialized PEMFC stacks: BCS 500 W PEMFC and Avista SR-12 PEM. The extracted parameters' accuracy is measured as the sum of square errors (SSE) between the results produced by the optimizer and the experimental data in the objective function. As a result, the proposed PEMFC optimizing model outperforms the comparison models in terms of system correctness and convergence. The proposed extraction strategy, mBES, obtained the best results, with a fitness value of 0.011364 for the 500 W BCS and 0.035099 for the Avista SR-12 500 W PEMFC.
引用
收藏
页数:16
相关论文
共 42 条
  • [1] Optimal Estimation of Proton Exchange Membrane Fuel Cells Parameter Based on Coyote Optimization Algorithm
    Abaza, Amlak
    El-Sehiemy, Ragab A.
    Mahmoud, Karar
    Lehtonen, Matti
    Darwish, Mohamed M. F.
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (05): : 1 - 16
  • [2] Effective parameters' identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer
    Ali, M.
    El-Hameed, M. A.
    Farahat, M. A.
    [J]. RENEWABLE ENERGY, 2017, 111 : 455 - 462
  • [3] A PEMFC model optimization using the enhanced bald eagle algorithm
    Alsaidan, Ibrahim
    Shaheen, Mohamed A. M.
    Hasanien, Hany M.
    Alaraj, Muhannad
    Alnafisah, Abrar S.
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2022, 13 (06)
  • [4] [Anonymous], 2021, Technical Report
  • [5] An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm
    Cao, Yan
    Li, Yiqing
    Zhang, Geng
    Jermsittiparsert, Kittisak
    Nasseri, Maryam
    [J]. ENERGY REPORTS, 2020, 6 (06) : 530 - 542
  • [6] Bi-subgroup optimization algorithm for parameter estimation of a PEMFC model
    Chen, Yang
    Pi, Dechang
    Wang, Bi
    Chen, Junfu
    Xu, Yue
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 196
  • [7] Fuel Cell Parameters Estimation via Marine Predators and Political Optimizers
    Diab, Ahmed A. Zaki
    Tolba, Mohamed A.
    El-Magd, Ayat Gamal Abo
    Zaky, Magdy M.
    El-Rifaie, Ali M.
    [J]. IEEE ACCESS, 2020, 8 : 166998 - 167018
  • [8] Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer
    El-Fergany, Attia A.
    [J]. RENEWABLE ENERGY, 2018, 119 : 641 - 648
  • [9] A novel approach for PEM fuel cell parameter estimation using LSHADE-EpSin optimization algorithm
    Fathy, Ahmed
    Abdel Aleem, Shady H. E.
    Rezk, Hegazy
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (05) : 6922 - 6942
  • [10] Multi-verse optimizer for identifying the optimal parameters of PEMFC model
    Fathy, Ahmed
    Rezk, Hegazy
    [J]. ENERGY, 2018, 143 : 634 - 644