Generalized Rashba electron-phonon coupling and superconductivity in strontium titanate

被引:6
作者
Gastiasoro, Maria N. [1 ,2 ,3 ]
Temperini, Maria Eleonora [4 ]
Barone, Paolo [5 ]
Lorenzana, Jose [1 ,2 ]
机构
[1] Sapienza Univ Rome, ISC CNR, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[2] Sapienza Univ Rome, Dept Phys, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[3] Donostia Int Phys Ctr, Donostia San Sebastian 20018, Spain
[4] ISC CNR Inst Complex Syst, Via Taurini 19, I-00185 Rome, Italy
[5] SPIN CNR Inst Superconducting & Other Innovat Mat, Area Ric Tor Vergata, Via Fosso Cavaliere 100, I-00133 Rome, Italy
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 02期
关键词
TRANSITION;
D O I
10.1103/PhysRevResearch.5.023177
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
SrTiO3 is known for its proximity to a ferroelectric phase and for showing an "optimal" doping for superconductivity with a characteristic domelike behavior resembling systems close to a quantum critical point. Several mechanisms have been proposed to link these phenomena, but the abundance of undetermined parameters prevents a definite assessment. Here, we use ab initio computations supplemented with a microscopic model to study the linear coupling between conduction electrons and the ferroelectric soft transverse modes allowed in the presence of spin-orbit coupling. We find a robust Rashba-like coupling, which can become surprisingly strong for particular forms of the polar eigenvector. We characterize this sensitivity for general eigenvectors and, for the particular form deduced by hyper-Raman scattering experiments, we find a Bardeen-Cooper-Schrieffer pairing coupling constant of the right order of magnitude to support superconductivity. The ab initio computations enable us to go beyond the linear-in-momentum conventional Rashba-like interaction and naturally explain the dome behavior including a characteristic asymmetry. The dome is attributed to a momentum-dependent quenching of the angular momentum due to a competition between spin-orbit and hopping energies. The optimum density for having maximum Tc results in rather good agreement with experiments without free parameters. These results make the generalized Rashba dynamic coupling to the ferroelectric soft mode a compelling pairing mechanism to understand bulk superconductivity in doped SrTiO3.
引用
收藏
页数:18
相关论文
共 92 条
  • [11] Many-body large polaron optical conductivity in SrTi1-xNbxO3
    Devreese, J. T.
    Klimin, S. N.
    van Mechelen, J. L. M.
    van der Marel, D.
    [J]. PHYSICAL REVIEW B, 2010, 81 (12):
  • [12] Rationalizing and engineering Rashba spin-splitting in ferroelectric oxides
    Djani, Hania
    Camilo Garcia-Castro, Andres
    Tong, Wen-Yi
    Barone, Paolo
    Bousquet, Eric
    Picozzi, Silvia
    Ghosez, Philippe
    [J]. NPJ QUANTUM MATERIALS, 2019, 4 (1)
  • [13] Edelman A, 2021, Arxiv, DOI arXiv:2111.03138
  • [14] Quantum Critical Origin of the Superconducting Dome in SrTiO3
    Edge, Jonathan M.
    Kedem, Yaron
    Aschauer, Ulrich
    Spaldin, Nicola A.
    Balatsky, Alexander V.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (24)
  • [15] Enderlein C, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-18438-0
  • [16] Fauqué B, 2023, Arxiv, DOI arXiv:2208.09831
  • [17] Mesoscopic fluctuating domains in strontium titanate
    Fauque, Benoit
    Bourges, Philippe
    Subedi, Alaska
    Behnia, Kamran
    Baptiste, Benoit
    Roessli, Bertrand
    Fennell, Tom
    Raymond, Stephane
    Steffens, Paul
    [J]. PHYSICAL REVIEW B, 2022, 106 (14)
  • [18] Giant Gruneisen parameter in a superconducting quantum paraelectric
    Franklin, J.
    Xu, B.
    Davino, D.
    Mahabir, A.
    Balatsky, A., V
    Aschauer, U.
    Sochnikov, I
    [J]. PHYSICAL REVIEW B, 2021, 103 (21)
  • [19] Parity-Breaking Phases of Spin-Orbit-Coupled Metals with Gyrotropic, Ferroelectric, and Multipolar Orders
    Fu, Liang
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (02)
  • [20] Theory of superconductivity mediated by Rashba coupling in incipient ferroelectrics
    Gastiasoro, Maria N.
    Temperini, Maria Eleonora
    Barone, Paolo
    Lorenzana, Jose
    [J]. PHYSICAL REVIEW B, 2022, 105 (22)