Normalized solutions for the fractional Choquard equations with Sobolev critical and double mass supercritical growth

被引:4
|
作者
Li, Quanqing [1 ]
Wang, Wenbo [2 ]
Liu, Meiqi [3 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Yunnan, Peoples R China
[2] Yunnan Univ, Dept Math & Stat, Kunming 650091, Yunnan, Peoples R China
[3] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Choquard equation; Normalized solution; Sobolev critical exponent; EXISTENCE; WAVES;
D O I
10.1007/s11005-023-01672-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present paper, we study the following Sobolev critical fractional Choquard equation {(-Delta)(s)u + lambda u = eta[vertical bar x vertical bar(-mu)*vertical bar u vertical bar(p)]vertical bar u vertical bar(p-2) u + vertical bar u vertical bar(2*s-2)u, in R-N, integral(RN)vertical bar u vertical bar(2)dx = m(2), where m, eta > 0, 0 < s < 1, N >= 2, 0 < mu < 2s, 2 + 2 s-mu/N < p <= 2N-mu+s.2(s)*/N < 2 mu(*)(,s) := 2N-mu/N-2s, 2(s)(*) := 2N/N-2s is the fractional Sobolev critical exponent. By virtue of a fiber map and the concentration-compactness principle, we obtain a couple of normalized solutions to the above equation for large eta, which extends and improves the results in Li et al. and Yang, and almost no one has studied the double mass supercritical cases.
引用
收藏
页数:9
相关论文
共 50 条