Bioinspired Polyacrylic Acid-Based Dressing: Wet Adhesive, Self-Healing, and Multi-Biofunctional Coacervate Hydrogel Accelerates Wound Healing

被引:101
|
作者
Wang, Lingshuang [1 ]
Duan, Lian [1 ]
Liu, Ga [1 ]
Sun, Jianfeng [2 ]
Shahbazi, Mohammad-Ali [3 ]
Kundu, Subhas C. C. [4 ]
Reis, Rui L. L. [4 ]
Xiao, Bo [1 ]
Yang, Xiao [1 ]
机构
[1] Southwest Univ, Coll Sericulture Text & Biomass Sci, State Key Lab Silkworm Genome Biol, Chongqing 400715, Peoples R China
[2] Univ Oxford, Botnar Res Ctr, Nuffield Dept Orthoped Rheumatol & Musculoskeletal, Oxford OX3 7LD, England
[3] Univ Groningen, Univ Med Ctr Groningen, Dept Biomed Engn, Antonius Deusinglaan 1, NL-9713 AV Groningen, Netherlands
[4] Univ Minho, I3Bs Res Inst Biomat Biodegradables & Biomimet, Headquarters European Inst Excellence Tissue Engn, 3Bs Res Grp, AvePk, P-4805017 Barco, Guimaraes, Portugal
基金
中国国家自然科学基金;
关键词
antibacterial; polyacrylic acid; tannic acid; wet adhesion; wound healing; TANNIC-ACID; INSPIRED ADHESIVE; TOUGH; POLYMERS; TISSUE; PERFORMANCE; EFFICIENT; DESIGN;
D O I
10.1002/advs.202207352
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polyacrylic acid (PAA) and its derivatives are commonly used as essential matrices in wound dressings, but their weak wet adhesion restricts the clinical application. To address this issue, a PAA-based coacervate hydrogel with strong wet adhesion capability is fabricated through a facile mixture of PAA copolymers with isoprenyl oxy poly(ethylene glycol) ether and tannic acid (TA). The poly(ethylene glycol) segments on PAA prevent the electrostatic repulsion among the ionized carboxyl groups and absorbed TA to form coacervates. The absorbed TA provides solid adhesion to dry and wet substrates via multifarious interactions, which endows the coacervate with an adhesive strength to skin of 23.4 kPa and 70% adhesion underwater. This coacervate achieves desirable self-healing and extensible properties suitable for frequently moving joints. These investigations prove that the coacervate has strong antibacterial activity, facilitates fibroblast migration, and modulates M1/M2 polarization of macrophages. In vivo hemorrhage experiments further confirm that the coacervate dramatically shortens the hemostatic time from hundreds to tens of seconds. In addition, full-thickness skin defect experiments demonstrate that the coacervate achieves the best therapeutic effect by significantly promoting collagen deposition, angiogenesis, and epithelialization. These results demonstrate that a PAA-based coacervate hydrogel is a promising wound dressing for medical translation.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Reinforcement of Self-Healing Polyacrylic Acid Hydrogel with Acrylamide Modified Microcrystalline Cellulose
    Bai, Changzhuang
    Huang, Qiuhua
    Xiong, Xiaopeng
    CHINESE JOURNAL OF CHEMISTRY, 2020, 38 (05) : 494 - 500
  • [22] Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing
    Du, Shuo
    Zhou, Nuoya
    Gao, Yujie
    Xie, Ge
    Du, Hongyao
    Jiang, Hao
    Zhang, Lianbin
    Tao, Juan
    Zhu, Jintao
    NANO RESEARCH, 2020, 13 (09) : 2525 - 2533
  • [23] Multi-functional Gleditsia sinensis galactomannan-based hydrogel with highly stretchable, adhesive, and antibacterial properties as wound dressing for accelerating wound healing
    E, Yuyu
    Chang, Zeyu
    Su, Weiyin
    Li, Wen
    Li, Pengfei
    Lei, Fuhou
    Yao, Xi
    Yuan, Shengguang
    Li, Jie
    Zhang, Fenglun
    Jiang, Jianxin
    Wang, Kun
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 283
  • [24] Preparation and application of recyclable multifunctional self-healing thioctic acid-based materials
    Cui, Jinwei
    Su, Xuesu
    Jiao, Bining
    Liao, Yueting
    Xiang, Wei
    Fang, Yangyang
    EUROPEAN POLYMER JOURNAL, 2022, 181
  • [25] Antibacterial and self-healing sepiolite-based hybrid hydrogel for hemostasis and wound healing
    Jiang, Yizhi
    Wang, Li
    Qi, Wangdan
    Yin, Peisheng
    Liao, Xiang
    Luo, Yuze
    Ding, Yanhuai
    BIOMATERIALS ADVANCES, 2024, 159
  • [26] Anti-Oxidant Bactericidal Conductive Injectable Hydrogel as Self-Healing Wound Dressing for Subcutaneous Wound Healing in Nursing Care
    Xu, Kaiyun
    Yang, Ying
    Li, Li
    Wu, Jialing
    SCIENCE OF ADVANCED MATERIALS, 2018, 10 (12) : 1714 - 1720
  • [27] All-natural injectable hydrogel with self-healing and antibacterial properties for wound dressing
    Li, Wenying
    Wang, Baoxiu
    Zhang, Minghao
    Wu, Zuotong
    Wei, Jiaxin
    Jiang, Yu
    Sheng, Nan
    Liang, Qianqian
    Zhang, Dong
    Chen, Shiyan
    CELLULOSE, 2020, 27 (05) : 2637 - 2650
  • [28] All-natural injectable hydrogel with self-healing and antibacterial properties for wound dressing
    Wenying Li
    Baoxiu Wang
    Minghao Zhang
    Zuotong Wu
    Jiaxin Wei
    Yu Jiang
    Nan Sheng
    Qianqian Liang
    Dong Zhang
    Shiyan Chen
    Cellulose, 2020, 27 : 2637 - 2650
  • [29] Polysaccharide-Based Adhesive Antibacterial and Self-Healing Hydrogel for Sealing Hemostasis
    Zhao, Xiaoli
    Huang, Ya-feng
    Tian, Xuan
    Luo, Jinni
    Wang, Huanxia
    Wang, Jinfei
    Chen, Yuan
    Jia, Pengxiang
    BIOMACROMOLECULES, 2022, 23 (12) : 5106 - 5115
  • [30] Self-crosslinking hyaluronic acid-based hydrogel with promoting vascularization and ROS scavenging for wound healing
    Zhang, Wenning
    Wang, Han
    Pang, Jie
    Huang, Yadong
    Li, Hang
    Tang, Shunqing
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 278